Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure

The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-10, Vol.144 (41), p.18887-18895
Hauptverfasser: Xi, Yilian, Jing, Xiaoling, Xu, Zhongfei, Liu, Nana, Liu, Yani, Lin, Miao-Ling, Yang, Ming, Sun, Ying, Zhuang, Jincheng, Xu, Xun, Hao, Weichang, Li, Yanchun, Li, Xiaodong, Wei, Xiangjun, Tan, Ping-Heng, Li, Quanjun, Liu, Bingbing, Dou, Shi Xue, Du, Yi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18895
container_issue 41
container_start_page 18887
container_title Journal of the American Chemical Society
container_volume 144
creator Xi, Yilian
Jing, Xiaoling
Xu, Zhongfei
Liu, Nana
Liu, Yani
Lin, Miao-Ling
Yang, Ming
Sun, Ying
Zhuang, Jincheng
Xu, Xun
Hao, Weichang
Li, Yanchun
Li, Xiaodong
Wei, Xiangjun
Tan, Ping-Heng
Li, Quanjun
Liu, Bingbing
Dou, Shi Xue
Du, Yi
description The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (T c) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of T c up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron–phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.
doi_str_mv 10.1021/jacs.2c05683
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721262457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721262457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-9b49f3b3b161773fb511cb46bd2a2a1122d9608dc86357fefba8b917be55ecea3</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxRdRsFZv_gF79GDqziabTY5StBUKih94XPZjUlPapO4mhfz33dKCF0_DzPx4vPcIuQU2AcbhYaVtmHDLRF6kZ2QEgrNEAM_PyYgxxhNZ5OkluQphFdeMFzAi7x_9Fr1tG9fbrt7V3UDrhi70gB4d3emGOvT0W-t1oPPB-XaJje7ia4Z-oxtskOqOzuvlD33zGELv8ZpcVBHHm9Mck6_np8_pPFm8zl6mj4tEpwy6pDRZWaUmNZCDlGllBIA1WW4c11wDcO7KnBXORtNCVlgZXZgSpEEh0KJOx-TuqLv17W-PoVObOlhcr6Ottg-KSx6z80zIiN4fUevbEDxWauvrjfaDAqYO1alDdepU3Z_y4bhqe9_EHP-je7I7b9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721262457</pqid></control><display><type>article</type><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><source>ACS Publications</source><creator>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Lin, Miao-Ling ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Wei, Xiangjun ; Tan, Ping-Heng ; Li, Quanjun ; Liu, Bingbing ; Dou, Shi Xue ; Du, Yi</creator><creatorcontrib>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Lin, Miao-Ling ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Wei, Xiangjun ; Tan, Ping-Heng ; Li, Quanjun ; Liu, Bingbing ; Dou, Shi Xue ; Du, Yi</creatorcontrib><description>The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (T c) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of T c up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron–phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c05683</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-10, Vol.144 (41), p.18887-18895</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-9b49f3b3b161773fb511cb46bd2a2a1122d9608dc86357fefba8b917be55ecea3</citedby><cites>FETCH-LOGICAL-a301t-9b49f3b3b161773fb511cb46bd2a2a1122d9608dc86357fefba8b917be55ecea3</cites><orcidid>0000-0002-1597-7151 ; 0000-0003-3989-0891 ; 0000-0001-6575-1516 ; 0000-0002-4718-4156 ; 0000-0003-1932-6732 ; 0000-0003-3632-1108 ; 0000-0002-0504-362X ; 0000-0003-3824-7693 ; 0000-0003-0590-372X ; 0000-0002-2290-1198 ; 0000-0001-5838-8237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c05683$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c05683$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xi, Yilian</creatorcontrib><creatorcontrib>Jing, Xiaoling</creatorcontrib><creatorcontrib>Xu, Zhongfei</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Lin, Miao-Ling</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Hao, Weichang</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Wei, Xiangjun</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Li, Quanjun</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Dou, Shi Xue</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (T c) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of T c up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron–phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkM1Lw0AQxRdRsFZv_gF79GDqziabTY5StBUKih94XPZjUlPapO4mhfz33dKCF0_DzPx4vPcIuQU2AcbhYaVtmHDLRF6kZ2QEgrNEAM_PyYgxxhNZ5OkluQphFdeMFzAi7x_9Fr1tG9fbrt7V3UDrhi70gB4d3emGOvT0W-t1oPPB-XaJje7ia4Z-oxtskOqOzuvlD33zGELv8ZpcVBHHm9Mck6_np8_pPFm8zl6mj4tEpwy6pDRZWaUmNZCDlGllBIA1WW4c11wDcO7KnBXORtNCVlgZXZgSpEEh0KJOx-TuqLv17W-PoVObOlhcr6Ottg-KSx6z80zIiN4fUevbEDxWauvrjfaDAqYO1alDdepU3Z_y4bhqe9_EHP-je7I7b9M</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Xi, Yilian</creator><creator>Jing, Xiaoling</creator><creator>Xu, Zhongfei</creator><creator>Liu, Nana</creator><creator>Liu, Yani</creator><creator>Lin, Miao-Ling</creator><creator>Yang, Ming</creator><creator>Sun, Ying</creator><creator>Zhuang, Jincheng</creator><creator>Xu, Xun</creator><creator>Hao, Weichang</creator><creator>Li, Yanchun</creator><creator>Li, Xiaodong</creator><creator>Wei, Xiangjun</creator><creator>Tan, Ping-Heng</creator><creator>Li, Quanjun</creator><creator>Liu, Bingbing</creator><creator>Dou, Shi Xue</creator><creator>Du, Yi</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1597-7151</orcidid><orcidid>https://orcid.org/0000-0003-3989-0891</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-4718-4156</orcidid><orcidid>https://orcid.org/0000-0003-1932-6732</orcidid><orcidid>https://orcid.org/0000-0003-3632-1108</orcidid><orcidid>https://orcid.org/0000-0002-0504-362X</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid><orcidid>https://orcid.org/0000-0003-0590-372X</orcidid><orcidid>https://orcid.org/0000-0002-2290-1198</orcidid><orcidid>https://orcid.org/0000-0001-5838-8237</orcidid></search><sort><creationdate>20221019</creationdate><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><author>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Lin, Miao-Ling ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Wei, Xiangjun ; Tan, Ping-Heng ; Li, Quanjun ; Liu, Bingbing ; Dou, Shi Xue ; Du, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-9b49f3b3b161773fb511cb46bd2a2a1122d9608dc86357fefba8b917be55ecea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Yilian</creatorcontrib><creatorcontrib>Jing, Xiaoling</creatorcontrib><creatorcontrib>Xu, Zhongfei</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Lin, Miao-Ling</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Hao, Weichang</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Wei, Xiangjun</creatorcontrib><creatorcontrib>Tan, Ping-Heng</creatorcontrib><creatorcontrib>Li, Quanjun</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Dou, Shi Xue</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Yilian</au><au>Jing, Xiaoling</au><au>Xu, Zhongfei</au><au>Liu, Nana</au><au>Liu, Yani</au><au>Lin, Miao-Ling</au><au>Yang, Ming</au><au>Sun, Ying</au><au>Zhuang, Jincheng</au><au>Xu, Xun</au><au>Hao, Weichang</au><au>Li, Yanchun</au><au>Li, Xiaodong</au><au>Wei, Xiangjun</au><au>Tan, Ping-Heng</au><au>Li, Quanjun</au><au>Liu, Bingbing</au><au>Dou, Shi Xue</au><au>Du, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-10-19</date><risdate>2022</risdate><volume>144</volume><issue>41</issue><spage>18887</spage><epage>18895</epage><pages>18887-18895</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The emergence of superconductivity in two-dimensional (2D) materials has attracted tremendous research efforts because the origins and mechanisms behind the unexpected and fascinating superconducting phenomena remain unclear. In particular, the superconductivity can survive in 2D systems even with weakened disorder and broken spatial inversion symmetry. Here, structural and superconducting transitions of 2D van der Waals (vdW) hydrogenated germanene (GeH) are observed under compression and decompression processes. GeH possesses a superconducting transition with a critical temperature (T c) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa, while superconductivity remains. An abnormal increase of T c up to 6.11 K was observed during the decompression process, while the GeH remained in the 2D amorphous phase. A combination study of in situ high-pressure synchrotron X-ray diffraction, in situ high-pressure Raman spectroscopy, transition electron microscopy, and density functional theory simulations suggests that the superconductivity in 2D vdW GeH is attributed to the increased density of states at the Fermi level as well as the enhanced electron–phonon coupling effect under high pressure even in the form of an amorphous phase. The unique pressure-induced phase transition of GeH from 2D crystalline to 2D amorphous metal hydride provides a promising platform to study the mechanisms of amorphous hydride superconductivity.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.2c05683</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1597-7151</orcidid><orcidid>https://orcid.org/0000-0003-3989-0891</orcidid><orcidid>https://orcid.org/0000-0001-6575-1516</orcidid><orcidid>https://orcid.org/0000-0002-4718-4156</orcidid><orcidid>https://orcid.org/0000-0003-1932-6732</orcidid><orcidid>https://orcid.org/0000-0003-3632-1108</orcidid><orcidid>https://orcid.org/0000-0002-0504-362X</orcidid><orcidid>https://orcid.org/0000-0003-3824-7693</orcidid><orcidid>https://orcid.org/0000-0003-0590-372X</orcidid><orcidid>https://orcid.org/0000-0002-2290-1198</orcidid><orcidid>https://orcid.org/0000-0001-5838-8237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-10, Vol.144 (41), p.18887-18895
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2721262457
source ACS Publications
title Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A22%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductivity%20in%20Layered%20van%20der%20Waals%20Hydrogenated%20Germanene%20at%20High%20Pressure&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Xi,%20Yilian&rft.date=2022-10-19&rft.volume=144&rft.issue=41&rft.spage=18887&rft.epage=18895&rft.pages=18887-18895&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c05683&rft_dat=%3Cproquest_cross%3E2721262457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721262457&rft_id=info:pmid/&rfr_iscdi=true