Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models

Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2022-11, Vol.144, p.111307-111307, Article 111307
Hauptverfasser: Moya-Esteban, A., van der Kooij, H., Sartori, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111307
container_issue
container_start_page 111307
container_title Journal of biomechanics
container_volume 144
creator Moya-Esteban, A.
van der Kooij, H.
Sartori, M.
description Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation–contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle–tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion–extension moments displayed high correlation, R2 (mean range: 0.88–0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle–tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force–velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.
doi_str_mv 10.1016/j.jbiomech.2022.111307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721260455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929022003487</els_id><sourcerecordid>2721260455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-683441f1747d5fc6707f6d7e792f256e05d6868721f08eba23d61fc14e4a047a3</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhYMoTjv6CkPAjZtqk1Qqqd4pg38wIIiuQyq56UlNUmmTVEM_hm9shp5RcOPqcuE79-cchK4o2VJCxdt5O08-RTC3W0YY21JKeyKfoA0dZd-xfiRP0YYQRrsd25EL9KKUmRAiudw9Rxe9oDvKe7ZBv76laS0VQ6k-6urTgpPDYY2TznhOfqnYpWygYL_gcooRavYG68Vi_bcN3lW_7HHV5a7go9c46LyHrhgdAEMAU3OKp7TP-nB76mz2R1hwXItZQyp3Dag64JgshPISPXM6FHj1UC_Rj48fvl9_7m6-fvpy_f6mM5zz2omx55w62j6ygzNCEumElSB3zLFBABmsGMUoGXVkhEmz3grqDOXANeFS95fozXnuIaefa_tfRV8MhKAXSGtRrEmZIHwYGvr6H3ROa17adY3qSds9EtoocaZMTqVkcOqQm6f5pChR96GpWT2Gpu5DU-fQmvDqYfw6RbB_ZI8pNeDdGWj2wNFDVsV4WAxYn5u1yib_vx2_AS7srig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730670801</pqid></control><display><type>article</type><title>Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Moya-Esteban, A. ; van der Kooij, H. ; Sartori, M.</creator><creatorcontrib>Moya-Esteban, A. ; van der Kooij, H. ; Sartori, M.</creatorcontrib><description>Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation–contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle–tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion–extension moments displayed high correlation, R2 (mean range: 0.88–0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle–tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force–velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2022.111307</identifier><identifier>PMID: 36191432</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Asymmetric lifting ; Asymmetry ; Biomechanical Phenomena - physiology ; Body weight ; Chronic pain ; Compression ; Electromyography ; EMG-driven musculoskeletal modeling ; Estimates ; Exoskeleton ; Exoskeletons ; Force ; Hoisting ; Humans ; Inverse dynamics ; Joints (anatomy) ; L5/S1 moments ; Lifting ; Lumbar compression ; Lumbar compression forces ; Lumbosacral Region ; Muscle contraction ; Muscle, Skeletal - physiology ; Muscles ; Pain ; Robust control ; Spine - physiology ; Tendons</subject><ispartof>Journal of biomechanics, 2022-11, Vol.144, p.111307-111307, Article 111307</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><rights>2022. The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-683441f1747d5fc6707f6d7e792f256e05d6868721f08eba23d61fc14e4a047a3</citedby><cites>FETCH-LOGICAL-c444t-683441f1747d5fc6707f6d7e792f256e05d6868721f08eba23d61fc14e4a047a3</cites><orcidid>0000-0002-1510-4406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929022003487$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36191432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moya-Esteban, A.</creatorcontrib><creatorcontrib>van der Kooij, H.</creatorcontrib><creatorcontrib>Sartori, M.</creatorcontrib><title>Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation–contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle–tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion–extension moments displayed high correlation, R2 (mean range: 0.88–0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle–tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force–velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.</description><subject>Asymmetric lifting</subject><subject>Asymmetry</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Body weight</subject><subject>Chronic pain</subject><subject>Compression</subject><subject>Electromyography</subject><subject>EMG-driven musculoskeletal modeling</subject><subject>Estimates</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Hoisting</subject><subject>Humans</subject><subject>Inverse dynamics</subject><subject>Joints (anatomy)</subject><subject>L5/S1 moments</subject><subject>Lifting</subject><subject>Lumbar compression</subject><subject>Lumbar compression forces</subject><subject>Lumbosacral Region</subject><subject>Muscle contraction</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Pain</subject><subject>Robust control</subject><subject>Spine - physiology</subject><subject>Tendons</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc2KFDEUhYMoTjv6CkPAjZtqk1Qqqd4pg38wIIiuQyq56UlNUmmTVEM_hm9shp5RcOPqcuE79-cchK4o2VJCxdt5O08-RTC3W0YY21JKeyKfoA0dZd-xfiRP0YYQRrsd25EL9KKUmRAiudw9Rxe9oDvKe7ZBv76laS0VQ6k-6urTgpPDYY2TznhOfqnYpWygYL_gcooRavYG68Vi_bcN3lW_7HHV5a7go9c46LyHrhgdAEMAU3OKp7TP-nB76mz2R1hwXItZQyp3Dag64JgshPISPXM6FHj1UC_Rj48fvl9_7m6-fvpy_f6mM5zz2omx55w62j6ygzNCEumElSB3zLFBABmsGMUoGXVkhEmz3grqDOXANeFS95fozXnuIaefa_tfRV8MhKAXSGtRrEmZIHwYGvr6H3ROa17adY3qSds9EtoocaZMTqVkcOqQm6f5pChR96GpWT2Gpu5DU-fQmvDqYfw6RbB_ZI8pNeDdGWj2wNFDVsV4WAxYn5u1yib_vx2_AS7srig</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Moya-Esteban, A.</creator><creator>van der Kooij, H.</creator><creator>Sartori, M.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1510-4406</orcidid></search><sort><creationdate>202211</creationdate><title>Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models</title><author>Moya-Esteban, A. ; van der Kooij, H. ; Sartori, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-683441f1747d5fc6707f6d7e792f256e05d6868721f08eba23d61fc14e4a047a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetric lifting</topic><topic>Asymmetry</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Body weight</topic><topic>Chronic pain</topic><topic>Compression</topic><topic>Electromyography</topic><topic>EMG-driven musculoskeletal modeling</topic><topic>Estimates</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Hoisting</topic><topic>Humans</topic><topic>Inverse dynamics</topic><topic>Joints (anatomy)</topic><topic>L5/S1 moments</topic><topic>Lifting</topic><topic>Lumbar compression</topic><topic>Lumbar compression forces</topic><topic>Lumbosacral Region</topic><topic>Muscle contraction</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Pain</topic><topic>Robust control</topic><topic>Spine - physiology</topic><topic>Tendons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moya-Esteban, A.</creatorcontrib><creatorcontrib>van der Kooij, H.</creatorcontrib><creatorcontrib>Sartori, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moya-Esteban, A.</au><au>van der Kooij, H.</au><au>Sartori, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2022-11</date><risdate>2022</risdate><volume>144</volume><spage>111307</spage><epage>111307</epage><pages>111307-111307</pages><artnum>111307</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation–contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle–tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion–extension moments displayed high correlation, R2 (mean range: 0.88–0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle–tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force–velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36191432</pmid><doi>10.1016/j.jbiomech.2022.111307</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1510-4406</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2022-11, Vol.144, p.111307-111307, Article 111307
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_2721260455
source MEDLINE; Elsevier ScienceDirect Journals
subjects Asymmetric lifting
Asymmetry
Biomechanical Phenomena - physiology
Body weight
Chronic pain
Compression
Electromyography
EMG-driven musculoskeletal modeling
Estimates
Exoskeleton
Exoskeletons
Force
Hoisting
Humans
Inverse dynamics
Joints (anatomy)
L5/S1 moments
Lifting
Lumbar compression
Lumbar compression forces
Lumbosacral Region
Muscle contraction
Muscle, Skeletal - physiology
Muscles
Pain
Robust control
Spine - physiology
Tendons
title Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20estimation%20of%20lumbar%20joint%20forces%20in%20symmetric%20and%20asymmetric%20lifting%20tasks%20via%20large-scale%20electromyography-driven%20musculoskeletal%20models&rft.jtitle=Journal%20of%20biomechanics&rft.au=Moya-Esteban,%20A.&rft.date=2022-11&rft.volume=144&rft.spage=111307&rft.epage=111307&rft.pages=111307-111307&rft.artnum=111307&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2022.111307&rft_dat=%3Cproquest_cross%3E2721260455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730670801&rft_id=info:pmid/36191432&rft_els_id=S0021929022003487&rfr_iscdi=true