Modeling non-Rayleigh speckle distribution in SAR images
In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean:...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2002-06, Vol.40 (6), p.1430-1435 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1435 |
---|---|
container_issue | 6 |
container_start_page | 1430 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 40 |
creator | Delignon, Y. Pieczynski, W. |
description | In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image. |
doi_str_mv | 10.1109/TGRS.2002.800234 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27212555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1020275</ieee_id><sourcerecordid>907977600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</originalsourceid><addsrcrecordid>eNqNkctLAzEQxoMoWB93wcsi-Lhsnbw2ybGIL1CEVs8hzc7W6LpbN-3B_94sLSge1MvM5TffzDcfIQcUhpSCOX-8Hk-GDIANdSpcbJABlVLnUAixSQZATZEzbdg22YnxBYAKSdWA6Pu2xDo0s6xpm3zsPmoMs-csztG_1piVIS66MF0uQttkockmo3EW3twM4x7ZqlwdcX_dd8nT1eXjxU1-93B9ezG6y71QxSJHWWru0NOqVJAOkrospZyiM6lyPTUFF8wZ5MwwrUUl0FHGvaNCe84Kx3fJ6Up33rXvS4wL-xaix7p2DbbLaA0oo1QBkMiTX8nevRH0PyA3WgjxN6gYZclTAs9-BalSwLRSpl9-9AN9aZddk15ok38JquC9Hqwg37UxdljZeZfe3n1YCraP2_Zx2z5uu4o7jRyvdV30rq461_gQv-a4BsGBJu5wxQVE_CbLgCnJPwHFbK99</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884507635</pqid></control><display><type>article</type><title>Modeling non-Rayleigh speckle distribution in SAR images</title><source>IEEE Electronic Library (IEL)</source><creator>Delignon, Y. ; Pieczynski, W.</creator><creatorcontrib>Delignon, Y. ; Pieczynski, W.</creatorcontrib><description>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.800234</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Beta ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Exponential distribution ; Internal geophysics ; Inverse ; Radar ; Radar imaging ; Radar scattering ; Random variables ; Rayleigh scattering ; Remote sensing ; Rough surfaces ; Speckle ; Surface roughness ; Surface waves ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-06, Vol.40 (6), p.1430-1435</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</citedby><cites>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1020275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1020275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13804301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delignon, Y.</creatorcontrib><creatorcontrib>Pieczynski, W.</creatorcontrib><title>Modeling non-Rayleigh speckle distribution in SAR images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</description><subject>Applied geophysics</subject><subject>Beta</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Exponential distribution</subject><subject>Internal geophysics</subject><subject>Inverse</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar scattering</subject><subject>Random variables</subject><subject>Rayleigh scattering</subject><subject>Remote sensing</subject><subject>Rough surfaces</subject><subject>Speckle</subject><subject>Surface roughness</subject><subject>Surface waves</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkctLAzEQxoMoWB93wcsi-Lhsnbw2ybGIL1CEVs8hzc7W6LpbN-3B_94sLSge1MvM5TffzDcfIQcUhpSCOX-8Hk-GDIANdSpcbJABlVLnUAixSQZATZEzbdg22YnxBYAKSdWA6Pu2xDo0s6xpm3zsPmoMs-csztG_1piVIS66MF0uQttkockmo3EW3twM4x7ZqlwdcX_dd8nT1eXjxU1-93B9ezG6y71QxSJHWWru0NOqVJAOkrospZyiM6lyPTUFF8wZ5MwwrUUl0FHGvaNCe84Kx3fJ6Up33rXvS4wL-xaix7p2DbbLaA0oo1QBkMiTX8nevRH0PyA3WgjxN6gYZclTAs9-BalSwLRSpl9-9AN9aZddk15ok38JquC9Hqwg37UxdljZeZfe3n1YCraP2_Zx2z5uu4o7jRyvdV30rq461_gQv-a4BsGBJu5wxQVE_CbLgCnJPwHFbK99</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Delignon, Y.</creator><creator>Pieczynski, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20020601</creationdate><title>Modeling non-Rayleigh speckle distribution in SAR images</title><author>Delignon, Y. ; Pieczynski, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Beta</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Exponential distribution</topic><topic>Internal geophysics</topic><topic>Inverse</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar scattering</topic><topic>Random variables</topic><topic>Rayleigh scattering</topic><topic>Remote sensing</topic><topic>Rough surfaces</topic><topic>Speckle</topic><topic>Surface roughness</topic><topic>Surface waves</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delignon, Y.</creatorcontrib><creatorcontrib>Pieczynski, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delignon, Y.</au><au>Pieczynski, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling non-Rayleigh speckle distribution in SAR images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>40</volume><issue>6</issue><spage>1430</spage><epage>1435</epage><pages>1430-1435</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.800234</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2002-06, Vol.40 (6), p.1430-1435 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_27212555 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Beta Earth sciences Earth, ocean, space Exact sciences and technology Exponential distribution Internal geophysics Inverse Radar Radar imaging Radar scattering Random variables Rayleigh scattering Remote sensing Rough surfaces Speckle Surface roughness Surface waves Synthetic aperture radar |
title | Modeling non-Rayleigh speckle distribution in SAR images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20non-Rayleigh%20speckle%20distribution%20in%20SAR%20images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Delignon,%20Y.&rft.date=2002-06-01&rft.volume=40&rft.issue=6&rft.spage=1430&rft.epage=1435&rft.pages=1430-1435&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.800234&rft_dat=%3Cproquest_RIE%3E907977600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884507635&rft_id=info:pmid/&rft_ieee_id=1020275&rfr_iscdi=true |