Modeling non-Rayleigh speckle distribution in SAR images

In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2002-06, Vol.40 (6), p.1430-1435
Hauptverfasser: Delignon, Y., Pieczynski, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1435
container_issue 6
container_start_page 1430
container_title IEEE transactions on geoscience and remote sensing
container_volume 40
creator Delignon, Y.
Pieczynski, W.
description In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.
doi_str_mv 10.1109/TGRS.2002.800234
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27212555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1020275</ieee_id><sourcerecordid>907977600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</originalsourceid><addsrcrecordid>eNqNkctLAzEQxoMoWB93wcsi-Lhsnbw2ybGIL1CEVs8hzc7W6LpbN-3B_94sLSge1MvM5TffzDcfIQcUhpSCOX-8Hk-GDIANdSpcbJABlVLnUAixSQZATZEzbdg22YnxBYAKSdWA6Pu2xDo0s6xpm3zsPmoMs-csztG_1piVIS66MF0uQttkockmo3EW3twM4x7ZqlwdcX_dd8nT1eXjxU1-93B9ezG6y71QxSJHWWru0NOqVJAOkrospZyiM6lyPTUFF8wZ5MwwrUUl0FHGvaNCe84Kx3fJ6Up33rXvS4wL-xaix7p2DbbLaA0oo1QBkMiTX8nevRH0PyA3WgjxN6gYZclTAs9-BalSwLRSpl9-9AN9aZddk15ok38JquC9Hqwg37UxdljZeZfe3n1YCraP2_Zx2z5uu4o7jRyvdV30rq461_gQv-a4BsGBJu5wxQVE_CbLgCnJPwHFbK99</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884507635</pqid></control><display><type>article</type><title>Modeling non-Rayleigh speckle distribution in SAR images</title><source>IEEE Electronic Library (IEL)</source><creator>Delignon, Y. ; Pieczynski, W.</creator><creatorcontrib>Delignon, Y. ; Pieczynski, W.</creatorcontrib><description>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.800234</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Beta ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Exponential distribution ; Internal geophysics ; Inverse ; Radar ; Radar imaging ; Radar scattering ; Random variables ; Rayleigh scattering ; Remote sensing ; Rough surfaces ; Speckle ; Surface roughness ; Surface waves ; Synthetic aperture radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-06, Vol.40 (6), p.1430-1435</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</citedby><cites>FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1020275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1020275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13804301$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Delignon, Y.</creatorcontrib><creatorcontrib>Pieczynski, W.</creatorcontrib><title>Modeling non-Rayleigh speckle distribution in SAR images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</description><subject>Applied geophysics</subject><subject>Beta</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Exponential distribution</subject><subject>Internal geophysics</subject><subject>Inverse</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar scattering</subject><subject>Random variables</subject><subject>Rayleigh scattering</subject><subject>Remote sensing</subject><subject>Rough surfaces</subject><subject>Speckle</subject><subject>Surface roughness</subject><subject>Surface waves</subject><subject>Synthetic aperture radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkctLAzEQxoMoWB93wcsi-Lhsnbw2ybGIL1CEVs8hzc7W6LpbN-3B_94sLSge1MvM5TffzDcfIQcUhpSCOX-8Hk-GDIANdSpcbJABlVLnUAixSQZATZEzbdg22YnxBYAKSdWA6Pu2xDo0s6xpm3zsPmoMs-csztG_1piVIS66MF0uQttkockmo3EW3twM4x7ZqlwdcX_dd8nT1eXjxU1-93B9ezG6y71QxSJHWWru0NOqVJAOkrospZyiM6lyPTUFF8wZ5MwwrUUl0FHGvaNCe84Kx3fJ6Up33rXvS4wL-xaix7p2DbbLaA0oo1QBkMiTX8nevRH0PyA3WgjxN6gYZclTAs9-BalSwLRSpl9-9AN9aZddk15ok38JquC9Hqwg37UxdljZeZfe3n1YCraP2_Zx2z5uu4o7jRyvdV30rq461_gQv-a4BsGBJu5wxQVE_CbLgCnJPwHFbK99</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Delignon, Y.</creator><creator>Pieczynski, W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20020601</creationdate><title>Modeling non-Rayleigh speckle distribution in SAR images</title><author>Delignon, Y. ; Pieczynski, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-e5d83aec1fd7015558dd55bea955b38b96342a9e3292884f4ea123ca148c326a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Beta</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Exponential distribution</topic><topic>Internal geophysics</topic><topic>Inverse</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar scattering</topic><topic>Random variables</topic><topic>Rayleigh scattering</topic><topic>Remote sensing</topic><topic>Rough surfaces</topic><topic>Speckle</topic><topic>Surface roughness</topic><topic>Surface waves</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delignon, Y.</creatorcontrib><creatorcontrib>Pieczynski, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Delignon, Y.</au><au>Pieczynski, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling non-Rayleigh speckle distribution in SAR images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>40</volume><issue>6</issue><spage>1430</spage><epage>1435</epage><pages>1430-1435</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In non-Rayleigh distributed radar images, the number of scatterers can be viewed as a Poisson distributed random variable, with the mean itself random. When this mean is Gamma distributed, then the image classically satisfies the K distribution. We add three new possible distributions for this mean: inverse Gamma, Beta of the first kind, and Beta of the second kind. We show that new intensity distributions so obtained can be estimated, with the interest of the extension validated on a real image.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.800234</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2002-06, Vol.40 (6), p.1430-1435
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_27212555
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Beta
Earth sciences
Earth, ocean, space
Exact sciences and technology
Exponential distribution
Internal geophysics
Inverse
Radar
Radar imaging
Radar scattering
Random variables
Rayleigh scattering
Remote sensing
Rough surfaces
Speckle
Surface roughness
Surface waves
Synthetic aperture radar
title Modeling non-Rayleigh speckle distribution in SAR images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20non-Rayleigh%20speckle%20distribution%20in%20SAR%20images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Delignon,%20Y.&rft.date=2002-06-01&rft.volume=40&rft.issue=6&rft.spage=1430&rft.epage=1435&rft.pages=1430-1435&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.800234&rft_dat=%3Cproquest_RIE%3E907977600%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884507635&rft_id=info:pmid/&rft_ieee_id=1020275&rfr_iscdi=true