Multisource data classification with dependence trees

In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2002-03, Vol.40 (3), p.609-617
Hauptverfasser: Datcu, M., Melgani, F., Piardi, A., Serpico, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 3
container_start_page 609
container_title IEEE transactions on geoscience and remote sensing
container_volume 40
creator Datcu, M.
Melgani, F.
Piardi, A.
Serpico, S.B.
description In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.
doi_str_mv 10.1109/TGRS.2002.1000321
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27211532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1000321</ieee_id><sourcerecordid>28396514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFKzVHyBeguDHJXVmP7K7RylahYqg9Ry2mw1uSZOaTRH_vVtSUDxIT3N55oWZl5BThBEi6JvZ5OV1RAHoCAGAUdwjAxRCpZBxvk8GgDpLqdL0kByFsABALlAOiHhaV50Pzbq1LilMZxJbmRB86a3pfFMnn757Twq3cnXh6mi61rlwTA5KUwV3sp1D8nZ_Nxs_pNPnyeP4dppaLlWXFpRlwmaguDQZdTrTVrA5RaC60IWUpTHlXBYWFXILpQJRcq7cnGrLmCkMG5KrPnfVNh9rF7p86YN1VWVq16xDrpRCYDrDKC__lfF0xrXgO8CYJ3AHKCmiYDTC638hSglUSiY3med_6CJ-vo4vjKdwASAUiwh7ZNsmhNaV-ar1S9N-5Qj5pux8U3a-KTvflh13LrbBJlhTla2prQ8_i7EHqrmM7qx33jn3K7dP-QYTfq-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884500583</pqid></control><display><type>article</type><title>Multisource data classification with dependence trees</title><source>IEEE Electronic Library (IEL)</source><creator>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</creator><creatorcontrib>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</creatorcontrib><description>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.1000321</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Approximation ; Bayesian methods ; Classification ; Classification tree analysis ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Kernel ; Mathematical analysis ; Mathematical models ; Multilayer perceptrons ; Probability distribution ; Remote sensing ; Statistical analysis ; Statistical distributions ; Statistical methods ; Studies ; Synthetic aperture radar ; Tree graphs ; Trees ; Two dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-03, Vol.40 (3), p.609-617</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</citedby><cites>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1000321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1000321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13652947$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Melgani, F.</creatorcontrib><creatorcontrib>Piardi, A.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><title>Multisource data classification with dependence trees</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</description><subject>Applied geophysics</subject><subject>Approximation</subject><subject>Bayesian methods</subject><subject>Classification</subject><subject>Classification tree analysis</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Probability distribution</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>Tree graphs</subject><subject>Trees</subject><subject>Two dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1Lw0AQBuBFFKzVHyBeguDHJXVmP7K7RylahYqg9Ry2mw1uSZOaTRH_vVtSUDxIT3N55oWZl5BThBEi6JvZ5OV1RAHoCAGAUdwjAxRCpZBxvk8GgDpLqdL0kByFsABALlAOiHhaV50Pzbq1LilMZxJbmRB86a3pfFMnn757Twq3cnXh6mi61rlwTA5KUwV3sp1D8nZ_Nxs_pNPnyeP4dppaLlWXFpRlwmaguDQZdTrTVrA5RaC60IWUpTHlXBYWFXILpQJRcq7cnGrLmCkMG5KrPnfVNh9rF7p86YN1VWVq16xDrpRCYDrDKC__lfF0xrXgO8CYJ3AHKCmiYDTC638hSglUSiY3med_6CJ-vo4vjKdwASAUiwh7ZNsmhNaV-ar1S9N-5Qj5pux8U3a-KTvflh13LrbBJlhTla2prQ8_i7EHqrmM7qx33jn3K7dP-QYTfq-t</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Datcu, M.</creator><creator>Melgani, F.</creator><creator>Piardi, A.</creator><creator>Serpico, S.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20020301</creationdate><title>Multisource data classification with dependence trees</title><author>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Approximation</topic><topic>Bayesian methods</topic><topic>Classification</topic><topic>Classification tree analysis</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Probability distribution</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>Tree graphs</topic><topic>Trees</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Melgani, F.</creatorcontrib><creatorcontrib>Piardi, A.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Datcu, M.</au><au>Melgani, F.</au><au>Piardi, A.</au><au>Serpico, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisource data classification with dependence trees</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>40</volume><issue>3</issue><spage>609</spage><epage>617</epage><pages>609-617</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.1000321</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2002-03, Vol.40 (3), p.609-617
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_27211532
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Approximation
Bayesian methods
Classification
Classification tree analysis
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Kernel
Mathematical analysis
Mathematical models
Multilayer perceptrons
Probability distribution
Remote sensing
Statistical analysis
Statistical distributions
Statistical methods
Studies
Synthetic aperture radar
Tree graphs
Trees
Two dimensional displays
title Multisource data classification with dependence trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisource%20data%20classification%20with%20dependence%20trees&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Datcu,%20M.&rft.date=2002-03-01&rft.volume=40&rft.issue=3&rft.spage=609&rft.epage=617&rft.pages=609-617&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.1000321&rft_dat=%3Cproquest_RIE%3E28396514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884500583&rft_id=info:pmid/&rft_ieee_id=1000321&rfr_iscdi=true