Multisource data classification with dependence trees
In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous da...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2002-03, Vol.40 (3), p.609-617 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 3 |
container_start_page | 609 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 40 |
creator | Datcu, M. Melgani, F. Piardi, A. Serpico, S.B. |
description | In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load. |
doi_str_mv | 10.1109/TGRS.2002.1000321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27211532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1000321</ieee_id><sourcerecordid>28396514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFKzVHyBeguDHJXVmP7K7RylahYqg9Ry2mw1uSZOaTRH_vVtSUDxIT3N55oWZl5BThBEi6JvZ5OV1RAHoCAGAUdwjAxRCpZBxvk8GgDpLqdL0kByFsABALlAOiHhaV50Pzbq1LilMZxJbmRB86a3pfFMnn757Twq3cnXh6mi61rlwTA5KUwV3sp1D8nZ_Nxs_pNPnyeP4dppaLlWXFpRlwmaguDQZdTrTVrA5RaC60IWUpTHlXBYWFXILpQJRcq7cnGrLmCkMG5KrPnfVNh9rF7p86YN1VWVq16xDrpRCYDrDKC__lfF0xrXgO8CYJ3AHKCmiYDTC638hSglUSiY3med_6CJ-vo4vjKdwASAUiwh7ZNsmhNaV-ar1S9N-5Qj5pux8U3a-KTvflh13LrbBJlhTla2prQ8_i7EHqrmM7qx33jn3K7dP-QYTfq-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884500583</pqid></control><display><type>article</type><title>Multisource data classification with dependence trees</title><source>IEEE Electronic Library (IEL)</source><creator>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</creator><creatorcontrib>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</creatorcontrib><description>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2002.1000321</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Approximation ; Bayesian methods ; Classification ; Classification tree analysis ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Kernel ; Mathematical analysis ; Mathematical models ; Multilayer perceptrons ; Probability distribution ; Remote sensing ; Statistical analysis ; Statistical distributions ; Statistical methods ; Studies ; Synthetic aperture radar ; Tree graphs ; Trees ; Two dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2002-03, Vol.40 (3), p.609-617</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</citedby><cites>FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1000321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1000321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13652947$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Melgani, F.</creatorcontrib><creatorcontrib>Piardi, A.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><title>Multisource data classification with dependence trees</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</description><subject>Applied geophysics</subject><subject>Approximation</subject><subject>Bayesian methods</subject><subject>Classification</subject><subject>Classification tree analysis</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Probability distribution</subject><subject>Remote sensing</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><subject>Tree graphs</subject><subject>Trees</subject><subject>Two dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1Lw0AQBuBFFKzVHyBeguDHJXVmP7K7RylahYqg9Ry2mw1uSZOaTRH_vVtSUDxIT3N55oWZl5BThBEi6JvZ5OV1RAHoCAGAUdwjAxRCpZBxvk8GgDpLqdL0kByFsABALlAOiHhaV50Pzbq1LilMZxJbmRB86a3pfFMnn757Twq3cnXh6mi61rlwTA5KUwV3sp1D8nZ_Nxs_pNPnyeP4dppaLlWXFpRlwmaguDQZdTrTVrA5RaC60IWUpTHlXBYWFXILpQJRcq7cnGrLmCkMG5KrPnfVNh9rF7p86YN1VWVq16xDrpRCYDrDKC__lfF0xrXgO8CYJ3AHKCmiYDTC638hSglUSiY3med_6CJ-vo4vjKdwASAUiwh7ZNsmhNaV-ar1S9N-5Qj5pux8U3a-KTvflh13LrbBJlhTla2prQ8_i7EHqrmM7qx33jn3K7dP-QYTfq-t</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Datcu, M.</creator><creator>Melgani, F.</creator><creator>Piardi, A.</creator><creator>Serpico, S.B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>20020301</creationdate><title>Multisource data classification with dependence trees</title><author>Datcu, M. ; Melgani, F. ; Piardi, A. ; Serpico, S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-d2365c60847a62e969c53b21029d9d77faafb7dc1814c0f805f448eb29c33ada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied geophysics</topic><topic>Approximation</topic><topic>Bayesian methods</topic><topic>Classification</topic><topic>Classification tree analysis</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Probability distribution</topic><topic>Remote sensing</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><topic>Tree graphs</topic><topic>Trees</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datcu, M.</creatorcontrib><creatorcontrib>Melgani, F.</creatorcontrib><creatorcontrib>Piardi, A.</creatorcontrib><creatorcontrib>Serpico, S.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Datcu, M.</au><au>Melgani, F.</au><au>Piardi, A.</au><au>Serpico, S.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisource data classification with dependence trees</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>40</volume><issue>3</issue><spage>609</spage><epage>617</epage><pages>609-617</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In order to apply a statistical approach to the classification of multisource remote-sensing data, one of the main problems to face lies in the estimation of probability distribution functions. This problem arises out of the difficulty of defining a common statistical model for such heterogeneous data. A possible solution is to adopt nonparametric approaches, which rely on the availability of training samples without any assumption about the related statistical distributions. The purpose of this paper is to investigate the suitability of the concept of dependence trees for the integration of multisource information through estimation of probability distributions. First, this concept, introduced by Chow and Liu (1968), is used to provide an approximation of a probability distribution defined in an N-dimensional space by a product of N-1 probability distributions defined in two-dimensional (2-D) spaces; this approximation corresponds, in terms of graph theoretical interpretation, to a tree of dependence. For each land cover class, a dependence tree is generated by minimizing an appropriate closeness measure. Then, a nonparametric estimation of the second-order probability distributions is carried out through the Parzen window approach, based on the implementation of 2-D Gaussian kernels. In this way, it is possible to reduce the complexity of the estimation, while capturing a significant part of the interdependence among variables. A comparison with other multisource data fusion methods, namely, the multilayer perceptron (MLP) method, the k-nearest neighbor (k-NN) method, and a Bayesian hierarchical classifier (BHC), is made. Experimental results obtained on multisensor [airborne thematic mapper (ATM) and synthetic aperture radar (SAR)] and multisource (experimental synthetic aperture radar (E-SAR) and a textural feature) data sets show that the proposed fusion method based on dependence trees is able to provide a classification accuracy similar to those of the other methods considered, but with the advantage of a reduced computational load.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2002.1000321</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2002-03, Vol.40 (3), p.609-617 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_miscellaneous_27211532 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Approximation Bayesian methods Classification Classification tree analysis Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics Kernel Mathematical analysis Mathematical models Multilayer perceptrons Probability distribution Remote sensing Statistical analysis Statistical distributions Statistical methods Studies Synthetic aperture radar Tree graphs Trees Two dimensional displays |
title | Multisource data classification with dependence trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisource%20data%20classification%20with%20dependence%20trees&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Datcu,%20M.&rft.date=2002-03-01&rft.volume=40&rft.issue=3&rft.spage=609&rft.epage=617&rft.pages=609-617&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2002.1000321&rft_dat=%3Cproquest_RIE%3E28396514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884500583&rft_id=info:pmid/&rft_ieee_id=1000321&rfr_iscdi=true |