Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease

Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co‐expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia : diagnosis, assessment & disease monitoring assessment & disease monitoring, 2022, Vol.14 (1), p.e12354-n/a
Hauptverfasser: Kim, Bo‐Hyun, Vasanthakumar, Aparna, Li, Qingqin S., Nudelman, Kelly N.H., Risacher, Shannon L., Davis, Justin W., Idler, Kenneth, Lee, Jong‐Min, Seo, Sang Won, Waring, Jeffrey F., Saykin, Andrew J., Nho, Kwangsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e12354
container_title Alzheimer's & dementia : diagnosis, assessment & disease monitoring
container_volume 14
creator Kim, Bo‐Hyun
Vasanthakumar, Aparna
Li, Qingqin S.
Nudelman, Kelly N.H.
Risacher, Shannon L.
Davis, Justin W.
Idler, Kenneth
Lee, Jong‐Min
Seo, Sang Won
Waring, Jeffrey F.
Saykin, Andrew J.
Nho, Kwangsik
description Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co‐expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results WGCNA identified five modules associated with biological clocks, with the module designated as “purple” showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes. Weighted gene co‐expression network analysis (WGCNA) found five modules related to biological aging. Among the hub genes of the module, CX3CR1 was downregulated in AD. The CX3CR1 expression level was associated with cognitive performance and brain atrophy.
doi_str_mv 10.1002/dad2.12354
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720931163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A761372246</galeid><sourcerecordid>A761372246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4604-c48e527a04a5621bf26e92a4354c82e224e1f3ccfd7b3ba38733c0df2af597443</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXphR-ALHEAIe3ir8TJMepCW6mCC5wjxx5nXSX24sm2LGd-ON6mIMQBWfJYM8-8HvstipeMrhml_L3Vlq8ZF6V8UpzmwFe14s3Tv84nxTniLaWUyYZLRp8XJ6JitWKNPC1-XocZhqRnfwdEBz0e0COJjmw-tWSCeXsYcy2GXLNkgAAEvu8SIB5z3kKYvfOADyUkGjEar2ew5N7PW9L7OMbBGz0SPfgwEB9IO_7Ygp8gvUFiPYJGeFE8c3pEOH-MZ8XXjx--XFytbj5fXl-0NysjKyrzXkPJlaZSlxVnveMVNFzL_HZTc-BcAnPCGGdVL3otaiWEodZx7cpGSSnOireL7i7Fb3vAuZs8GhhHHSDuseOK00YwVomMvv4HvY37lP_nSJW1qIRSKlPrhRr0CJ0PLs5Jm7wsTN7EAM7nfKsqJlQer8oN75YGkyJiAtftkp90OnSMdkc_u6Of3YOfGX71OMO-n8D-QX-7lwG2APf5msN_pLpNu-GL6C829KoZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758363777</pqid></control><display><type>article</type><title>Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kim, Bo‐Hyun ; Vasanthakumar, Aparna ; Li, Qingqin S. ; Nudelman, Kelly N.H. ; Risacher, Shannon L. ; Davis, Justin W. ; Idler, Kenneth ; Lee, Jong‐Min ; Seo, Sang Won ; Waring, Jeffrey F. ; Saykin, Andrew J. ; Nho, Kwangsik</creator><creatorcontrib>Kim, Bo‐Hyun ; Vasanthakumar, Aparna ; Li, Qingqin S. ; Nudelman, Kelly N.H. ; Risacher, Shannon L. ; Davis, Justin W. ; Idler, Kenneth ; Lee, Jong‐Min ; Seo, Sang Won ; Waring, Jeffrey F. ; Saykin, Andrew J. ; Nho, Kwangsik ; Alzheimer's Disease Neuroimaging Initiative (ADNI) ; for the Alzheimer's Disease Neuroimaging Initiative (ADNI)</creatorcontrib><description>Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co‐expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results WGCNA identified five modules associated with biological clocks, with the module designated as “purple” showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes. Weighted gene co‐expression network analysis (WGCNA) found five modules related to biological aging. Among the hub genes of the module, CX3CR1 was downregulated in AD. The CX3CR1 expression level was associated with cognitive performance and brain atrophy.</description><identifier>ISSN: 2352-8729</identifier><identifier>EISSN: 2352-8729</identifier><identifier>DOI: 10.1002/dad2.12354</identifier><identifier>PMID: 36187194</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>AD biomarker ; Advertising executives ; Alzheimer's disease ; biological aging ; Biological clocks ; Cognition &amp; reasoning ; CX3CR1 ; Dementia ; DNA ; DNA methylation ; epigenetic clocks ; Gene expression ; Genes ; Genetic aspects ; Genetic research ; Methylation ; Risk factors ; telomere length ; weighted gene co‐expression network analysis (WGCNA)</subject><ispartof>Alzheimer's &amp; dementia : diagnosis, assessment &amp; disease monitoring, 2022, Vol.14 (1), p.e12354-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals, LLC on behalf of Alzheimer's Association.</rights><rights>2022 The Authors. Alzheimer's &amp; Dementia: Diagnosis, Assessment &amp; Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer's Association.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4604-c48e527a04a5621bf26e92a4354c82e224e1f3ccfd7b3ba38733c0df2af597443</citedby><cites>FETCH-LOGICAL-c4604-c48e527a04a5621bf26e92a4354c82e224e1f3ccfd7b3ba38733c0df2af597443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdad2.12354$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdad2.12354$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,4010,11541,27900,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36187194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Bo‐Hyun</creatorcontrib><creatorcontrib>Vasanthakumar, Aparna</creatorcontrib><creatorcontrib>Li, Qingqin S.</creatorcontrib><creatorcontrib>Nudelman, Kelly N.H.</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Davis, Justin W.</creatorcontrib><creatorcontrib>Idler, Kenneth</creatorcontrib><creatorcontrib>Lee, Jong‐Min</creatorcontrib><creatorcontrib>Seo, Sang Won</creatorcontrib><creatorcontrib>Waring, Jeffrey F.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative (ADNI)</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative (ADNI)</creatorcontrib><title>Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease</title><title>Alzheimer's &amp; dementia : diagnosis, assessment &amp; disease monitoring</title><addtitle>Alzheimers Dement (Amst)</addtitle><description>Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co‐expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results WGCNA identified five modules associated with biological clocks, with the module designated as “purple” showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes. Weighted gene co‐expression network analysis (WGCNA) found five modules related to biological aging. Among the hub genes of the module, CX3CR1 was downregulated in AD. The CX3CR1 expression level was associated with cognitive performance and brain atrophy.</description><subject>AD biomarker</subject><subject>Advertising executives</subject><subject>Alzheimer's disease</subject><subject>biological aging</subject><subject>Biological clocks</subject><subject>Cognition &amp; reasoning</subject><subject>CX3CR1</subject><subject>Dementia</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>epigenetic clocks</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Methylation</subject><subject>Risk factors</subject><subject>telomere length</subject><subject>weighted gene co‐expression network analysis (WGCNA)</subject><issn>2352-8729</issn><issn>2352-8729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhiMEolXphR-ALHEAIe3ir8TJMepCW6mCC5wjxx5nXSX24sm2LGd-ON6mIMQBWfJYM8-8HvstipeMrhml_L3Vlq8ZF6V8UpzmwFe14s3Tv84nxTniLaWUyYZLRp8XJ6JitWKNPC1-XocZhqRnfwdEBz0e0COJjmw-tWSCeXsYcy2GXLNkgAAEvu8SIB5z3kKYvfOADyUkGjEar2ew5N7PW9L7OMbBGz0SPfgwEB9IO_7Ygp8gvUFiPYJGeFE8c3pEOH-MZ8XXjx--XFytbj5fXl-0NysjKyrzXkPJlaZSlxVnveMVNFzL_HZTc-BcAnPCGGdVL3otaiWEodZx7cpGSSnOireL7i7Fb3vAuZs8GhhHHSDuseOK00YwVomMvv4HvY37lP_nSJW1qIRSKlPrhRr0CJ0PLs5Jm7wsTN7EAM7nfKsqJlQer8oN75YGkyJiAtftkp90OnSMdkc_u6Of3YOfGX71OMO-n8D-QX-7lwG2APf5msN_pLpNu-GL6C829KoZ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kim, Bo‐Hyun</creator><creator>Vasanthakumar, Aparna</creator><creator>Li, Qingqin S.</creator><creator>Nudelman, Kelly N.H.</creator><creator>Risacher, Shannon L.</creator><creator>Davis, Justin W.</creator><creator>Idler, Kenneth</creator><creator>Lee, Jong‐Min</creator><creator>Seo, Sang Won</creator><creator>Waring, Jeffrey F.</creator><creator>Saykin, Andrew J.</creator><creator>Nho, Kwangsik</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>2022</creationdate><title>Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease</title><author>Kim, Bo‐Hyun ; Vasanthakumar, Aparna ; Li, Qingqin S. ; Nudelman, Kelly N.H. ; Risacher, Shannon L. ; Davis, Justin W. ; Idler, Kenneth ; Lee, Jong‐Min ; Seo, Sang Won ; Waring, Jeffrey F. ; Saykin, Andrew J. ; Nho, Kwangsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4604-c48e527a04a5621bf26e92a4354c82e224e1f3ccfd7b3ba38733c0df2af597443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AD biomarker</topic><topic>Advertising executives</topic><topic>Alzheimer's disease</topic><topic>biological aging</topic><topic>Biological clocks</topic><topic>Cognition &amp; reasoning</topic><topic>CX3CR1</topic><topic>Dementia</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>epigenetic clocks</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Methylation</topic><topic>Risk factors</topic><topic>telomere length</topic><topic>weighted gene co‐expression network analysis (WGCNA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bo‐Hyun</creatorcontrib><creatorcontrib>Vasanthakumar, Aparna</creatorcontrib><creatorcontrib>Li, Qingqin S.</creatorcontrib><creatorcontrib>Nudelman, Kelly N.H.</creatorcontrib><creatorcontrib>Risacher, Shannon L.</creatorcontrib><creatorcontrib>Davis, Justin W.</creatorcontrib><creatorcontrib>Idler, Kenneth</creatorcontrib><creatorcontrib>Lee, Jong‐Min</creatorcontrib><creatorcontrib>Seo, Sang Won</creatorcontrib><creatorcontrib>Waring, Jeffrey F.</creatorcontrib><creatorcontrib>Saykin, Andrew J.</creatorcontrib><creatorcontrib>Nho, Kwangsik</creatorcontrib><creatorcontrib>Alzheimer's Disease Neuroimaging Initiative (ADNI)</creatorcontrib><creatorcontrib>for the Alzheimer's Disease Neuroimaging Initiative (ADNI)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Alzheimer's &amp; dementia : diagnosis, assessment &amp; disease monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bo‐Hyun</au><au>Vasanthakumar, Aparna</au><au>Li, Qingqin S.</au><au>Nudelman, Kelly N.H.</au><au>Risacher, Shannon L.</au><au>Davis, Justin W.</au><au>Idler, Kenneth</au><au>Lee, Jong‐Min</au><au>Seo, Sang Won</au><au>Waring, Jeffrey F.</au><au>Saykin, Andrew J.</au><au>Nho, Kwangsik</au><aucorp>Alzheimer's Disease Neuroimaging Initiative (ADNI)</aucorp><aucorp>for the Alzheimer's Disease Neuroimaging Initiative (ADNI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease</atitle><jtitle>Alzheimer's &amp; dementia : diagnosis, assessment &amp; disease monitoring</jtitle><addtitle>Alzheimers Dement (Amst)</addtitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>e12354</spage><epage>n/a</epage><pages>e12354-n/a</pages><issn>2352-8729</issn><eissn>2352-8729</eissn><abstract>Introduction The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co‐expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD. Methods We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance. In addition, we performed differential expression analysis and association analysis with AD biomarkers. Results WGCNA identified five modules associated with biological clocks, with the module designated as “purple” showing the strongest association. Functional enrichment analysis revealed that the purple module was related to cell migration and death. Ten genes were identified as hub genes in purple modules, of which CX3CR1 was downregulated in AD and low levels of CX3CR1 expression were associated with AD biomarkers. Conclusion Network analysis identified genes associated with biological clocks, which suggests the genetic architecture underlying biological aging in AD. Highlights Examine links between Alzheimer's disease (AD) peripheral transcriptome and biological aging changes. Weighted gene co‐expression network analysis (WGCNA) found five modules related to biological aging. Among the hub genes of the module, CX3CR1 was downregulated in AD. The CX3CR1 expression level was associated with cognitive performance and brain atrophy.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36187194</pmid><doi>10.1002/dad2.12354</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-8729
ispartof Alzheimer's & dementia : diagnosis, assessment & disease monitoring, 2022, Vol.14 (1), p.e12354-n/a
issn 2352-8729
2352-8729
language eng
recordid cdi_proquest_miscellaneous_2720931163
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects AD biomarker
Advertising executives
Alzheimer's disease
biological aging
Biological clocks
Cognition & reasoning
CX3CR1
Dementia
DNA
DNA methylation
epigenetic clocks
Gene expression
Genes
Genetic aspects
Genetic research
Methylation
Risk factors
telomere length
weighted gene co‐expression network analysis (WGCNA)
title Integrative analysis of DNA methylation and gene expression identifies genes associated with biological aging in Alzheimer's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20DNA%20methylation%20and%20gene%20expression%20identifies%20genes%20associated%20with%20biological%20aging%20in%20Alzheimer's%20disease&rft.jtitle=Alzheimer's%20&%20dementia%20:%20diagnosis,%20assessment%20&%20disease%20monitoring&rft.au=Kim,%20Bo%E2%80%90Hyun&rft.aucorp=Alzheimer's%20Disease%20Neuroimaging%20Initiative%20(ADNI)&rft.date=2022&rft.volume=14&rft.issue=1&rft.spage=e12354&rft.epage=n/a&rft.pages=e12354-n/a&rft.issn=2352-8729&rft.eissn=2352-8729&rft_id=info:doi/10.1002/dad2.12354&rft_dat=%3Cgale_proqu%3EA761372246%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758363777&rft_id=info:pmid/36187194&rft_galeid=A761372246&rfr_iscdi=true