Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models

Background Dual‐phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). Purpose To develop and validate clinical and radiomics models based on contrast‐enhanced MRI for the preoperative diagnosis of DPHCC. Study type Retrospec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2023-04, Vol.57 (4), p.1185-1196
Hauptverfasser: Wu, Qian, Yu, Yi‐xing, Zhang, Tao, Zhu, Wen‐jing, Fan, Yan‐fen, Wang, Xi‐ming, Hu, Chun‐hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1196
container_issue 4
container_start_page 1185
container_title Journal of magnetic resonance imaging
container_volume 57
creator Wu, Qian
Yu, Yi‐xing
Zhang, Tao
Zhu, Wen‐jing
Fan, Yan‐fen
Wang, Xi‐ming
Hu, Chun‐hong
description Background Dual‐phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). Purpose To develop and validate clinical and radiomics models based on contrast‐enhanced MRI for the preoperative diagnosis of DPHCC. Study type Retrospective. Population A total of 87 patients with DPHCC and 92 patients with non‐DPHCC randomly divided into a training cohort (n = 125: 64 non‐DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non‐DPHCC; 26 DPHCC). Field Strength/Sequence A 3.0 T; dynamic contrast‐enhanced MRI with time‐resolved T1‐weighted imaging sequence. Assessment In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression‐least absolute shrinkage and selection operator [LR‐LASSO]) and their discriminatory efficacy assessed and compared. Statistical Tests The independent sample t test, Mann–Whitney U test, Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value 
doi_str_mv 10.1002/jmri.28391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720929563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720929563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-b3c737eec94ce6f20f445eeb2e97b09c0c9a301a466c1bdd0af362413b037fda3</originalsourceid><addsrcrecordid>eNp90L1u2zAUhmGiaFA7aZdeQECgSxBA6SEpUuJYOP9w0CBoZoGijmwakqiQVgtvuYRcY64kcpxm6NCJHB58OHgJ-crghAHw76s2uBOeC80-kCmTnCdc5urj-AcpEpZDNiH7Ma4AQOtUfiIToZgGJdWULG4D-h6DWbvfSE-dWXQ-ukh9TU8H0zw_Pt0usfPrTY_0Enuz9habZmhMoDMTrOt8a-h9dN2CnnVL01ms6M3dFb0zlfOts5He-Aqb-Jns1aaJ-OXtPSD352e_ZpfJ_OfF1ezHPLFCZiwphc1Ehmh1alHVHOo0lYglR52VoC1YbQQwkyplWVlVYGqheMpECSKrKyMOyNFutw_-YcC4LloXtyebDv0QC55x0FxLJUb67R-68kPoxutGlUsOIhdsVMc7ZYOPMWBd9MG1JmwKBsU2f7HNX7zmH_Hh2-RQtli907-9R8B24I9rcPOfqeJ6rLgbfQGmZZE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785203831</pqid></control><display><type>article</type><title>Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Wu, Qian ; Yu, Yi‐xing ; Zhang, Tao ; Zhu, Wen‐jing ; Fan, Yan‐fen ; Wang, Xi‐ming ; Hu, Chun‐hong</creator><creatorcontrib>Wu, Qian ; Yu, Yi‐xing ; Zhang, Tao ; Zhu, Wen‐jing ; Fan, Yan‐fen ; Wang, Xi‐ming ; Hu, Chun‐hong</creatorcontrib><description>Background Dual‐phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). Purpose To develop and validate clinical and radiomics models based on contrast‐enhanced MRI for the preoperative diagnosis of DPHCC. Study type Retrospective. Population A total of 87 patients with DPHCC and 92 patients with non‐DPHCC randomly divided into a training cohort (n = 125: 64 non‐DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non‐DPHCC; 26 DPHCC). Field Strength/Sequence A 3.0 T; dynamic contrast‐enhanced MRI with time‐resolved T1‐weighted imaging sequence. Assessment In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression‐least absolute shrinkage and selection operator [LR‐LASSO]) and their discriminatory efficacy assessed and compared. Statistical Tests The independent sample t test, Mann–Whitney U test, Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value &lt; 0.05 was considered statistically significant. Results In the validation cohort, the combined radiomics model (area under the curve [AUC] = 0.908, 95% confidence interval [CI]: 0.831–0.985) showed the highest diagnostic performance. The AUCs of the PP (AUC = 0.879, 95% CI: 0.779–0.979) and combined radiomics models were significantly higher than that of clinical model (AUC = 0.685, 95% CI: 0.526–0.844). There were no significant differences in AUC between AP or PP radiomics model and combined radiomics model (P = 0.286, 0.180 and 0.543). Conclusion MRI radiomics models may be useful for discriminating DPHCC from non‐DPHCC before surgery. Evidence Level 4 Technical Efficacy Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28391</identifier><identifier>PMID: 36190656</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Carcinoma, Hepatocellular - pathology ; Confidence intervals ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Diagnosis ; Dual‐phenotype hepatocellular carcinoma ; Effectiveness ; Feature extraction ; Field strength ; Hepatitis B ; Hepatocellular carcinoma ; Humans ; Liver cancer ; Liver Neoplasms - pathology ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Patients ; Phenotype ; Phenotypes ; Population studies ; preoperative diagnosis ; Radiomics ; Regression analysis ; Retrospective Studies ; Risk factors ; Statistical analysis ; Statistical tests ; Support vector machines ; Tumors ; Viruses</subject><ispartof>Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1185-1196</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-b3c737eec94ce6f20f445eeb2e97b09c0c9a301a466c1bdd0af362413b037fda3</citedby><cites>FETCH-LOGICAL-c3571-b3c737eec94ce6f20f445eeb2e97b09c0c9a301a466c1bdd0af362413b037fda3</cites><orcidid>0000-0002-6343-758X ; 0000-0002-0675-3383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.28391$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.28391$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36190656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Yu, Yi‐xing</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhu, Wen‐jing</creatorcontrib><creatorcontrib>Fan, Yan‐fen</creatorcontrib><creatorcontrib>Wang, Xi‐ming</creatorcontrib><creatorcontrib>Hu, Chun‐hong</creatorcontrib><title>Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Dual‐phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). Purpose To develop and validate clinical and radiomics models based on contrast‐enhanced MRI for the preoperative diagnosis of DPHCC. Study type Retrospective. Population A total of 87 patients with DPHCC and 92 patients with non‐DPHCC randomly divided into a training cohort (n = 125: 64 non‐DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non‐DPHCC; 26 DPHCC). Field Strength/Sequence A 3.0 T; dynamic contrast‐enhanced MRI with time‐resolved T1‐weighted imaging sequence. Assessment In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression‐least absolute shrinkage and selection operator [LR‐LASSO]) and their discriminatory efficacy assessed and compared. Statistical Tests The independent sample t test, Mann–Whitney U test, Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value &lt; 0.05 was considered statistically significant. Results In the validation cohort, the combined radiomics model (area under the curve [AUC] = 0.908, 95% confidence interval [CI]: 0.831–0.985) showed the highest diagnostic performance. The AUCs of the PP (AUC = 0.879, 95% CI: 0.779–0.979) and combined radiomics models were significantly higher than that of clinical model (AUC = 0.685, 95% CI: 0.526–0.844). There were no significant differences in AUC between AP or PP radiomics model and combined radiomics model (P = 0.286, 0.180 and 0.543). Conclusion MRI radiomics models may be useful for discriminating DPHCC from non‐DPHCC before surgery. Evidence Level 4 Technical Efficacy Stage 2</description><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Confidence intervals</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diagnosis</subject><subject>Dual‐phenotype hepatocellular carcinoma</subject><subject>Effectiveness</subject><subject>Feature extraction</subject><subject>Field strength</subject><subject>Hepatitis B</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - pathology</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Patients</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population studies</subject><subject>preoperative diagnosis</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk factors</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Support vector machines</subject><subject>Tumors</subject><subject>Viruses</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90L1u2zAUhmGiaFA7aZdeQECgSxBA6SEpUuJYOP9w0CBoZoGijmwakqiQVgtvuYRcY64kcpxm6NCJHB58OHgJ-crghAHw76s2uBOeC80-kCmTnCdc5urj-AcpEpZDNiH7Ma4AQOtUfiIToZgGJdWULG4D-h6DWbvfSE-dWXQ-ukh9TU8H0zw_Pt0usfPrTY_0Enuz9habZmhMoDMTrOt8a-h9dN2CnnVL01ms6M3dFb0zlfOts5He-Aqb-Jns1aaJ-OXtPSD352e_ZpfJ_OfF1ezHPLFCZiwphc1Ehmh1alHVHOo0lYglR52VoC1YbQQwkyplWVlVYGqheMpECSKrKyMOyNFutw_-YcC4LloXtyebDv0QC55x0FxLJUb67R-68kPoxutGlUsOIhdsVMc7ZYOPMWBd9MG1JmwKBsU2f7HNX7zmH_Hh2-RQtli907-9R8B24I9rcPOfqeJ6rLgbfQGmZZE8</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Wu, Qian</creator><creator>Yu, Yi‐xing</creator><creator>Zhang, Tao</creator><creator>Zhu, Wen‐jing</creator><creator>Fan, Yan‐fen</creator><creator>Wang, Xi‐ming</creator><creator>Hu, Chun‐hong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6343-758X</orcidid><orcidid>https://orcid.org/0000-0002-0675-3383</orcidid></search><sort><creationdate>202304</creationdate><title>Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models</title><author>Wu, Qian ; Yu, Yi‐xing ; Zhang, Tao ; Zhu, Wen‐jing ; Fan, Yan‐fen ; Wang, Xi‐ming ; Hu, Chun‐hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-b3c737eec94ce6f20f445eeb2e97b09c0c9a301a466c1bdd0af362413b037fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Confidence intervals</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diagnosis</topic><topic>Dual‐phenotype hepatocellular carcinoma</topic><topic>Effectiveness</topic><topic>Feature extraction</topic><topic>Field strength</topic><topic>Hepatitis B</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - pathology</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Patients</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population studies</topic><topic>preoperative diagnosis</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk factors</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Support vector machines</topic><topic>Tumors</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Yu, Yi‐xing</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Zhu, Wen‐jing</creatorcontrib><creatorcontrib>Fan, Yan‐fen</creatorcontrib><creatorcontrib>Wang, Xi‐ming</creatorcontrib><creatorcontrib>Hu, Chun‐hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qian</au><au>Yu, Yi‐xing</au><au>Zhang, Tao</au><au>Zhu, Wen‐jing</au><au>Fan, Yan‐fen</au><au>Wang, Xi‐ming</au><au>Hu, Chun‐hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-04</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>1185</spage><epage>1196</epage><pages>1185-1196</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Dual‐phenotype hepatocellular carcinoma (DPHCC) is highly aggressive and difficult to distinguish from hepatocellular carcinoma (HCC). Purpose To develop and validate clinical and radiomics models based on contrast‐enhanced MRI for the preoperative diagnosis of DPHCC. Study type Retrospective. Population A total of 87 patients with DPHCC and 92 patients with non‐DPHCC randomly divided into a training cohort (n = 125: 64 non‐DPHCC; 61 DPHCC) and a validation cohort (n = 54: 28 non‐DPHCC; 26 DPHCC). Field Strength/Sequence A 3.0 T; dynamic contrast‐enhanced MRI with time‐resolved T1‐weighted imaging sequence. Assessment In the clinical model, the maximum tumor diameter and hepatitis B virus (HBV) were independent risk factors of DPHCC. In the radiomics model, a total of 1781 radiomics features were extracted from tumor volumes of interest (VOIs) in the arterial phase (AP) and portal venous phase (PP) images. For feature reduction and selection, Pearson correlation coefficient (PCC) and recursive feature elimination (RFE) were used. Clinical, AP, PP, and combined radiomics models were established using machine learning algorithms (support vector machine [SVM], logistic regression [LR], and logistic regression‐least absolute shrinkage and selection operator [LR‐LASSO]) and their discriminatory efficacy assessed and compared. Statistical Tests The independent sample t test, Mann–Whitney U test, Chi‐square test, regression analysis, receiver operating characteristic curve (ROC) analysis, Pearson correlation analysis, the Delong test. A P value &lt; 0.05 was considered statistically significant. Results In the validation cohort, the combined radiomics model (area under the curve [AUC] = 0.908, 95% confidence interval [CI]: 0.831–0.985) showed the highest diagnostic performance. The AUCs of the PP (AUC = 0.879, 95% CI: 0.779–0.979) and combined radiomics models were significantly higher than that of clinical model (AUC = 0.685, 95% CI: 0.526–0.844). There were no significant differences in AUC between AP or PP radiomics model and combined radiomics model (P = 0.286, 0.180 and 0.543). Conclusion MRI radiomics models may be useful for discriminating DPHCC from non‐DPHCC before surgery. Evidence Level 4 Technical Efficacy Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36190656</pmid><doi>10.1002/jmri.28391</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6343-758X</orcidid><orcidid>https://orcid.org/0000-0002-0675-3383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2023-04, Vol.57 (4), p.1185-1196
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2720929563
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Carcinoma, Hepatocellular - pathology
Confidence intervals
Correlation analysis
Correlation coefficient
Correlation coefficients
Diagnosis
Dual‐phenotype hepatocellular carcinoma
Effectiveness
Feature extraction
Field strength
Hepatitis B
Hepatocellular carcinoma
Humans
Liver cancer
Liver Neoplasms - pathology
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Patients
Phenotype
Phenotypes
Population studies
preoperative diagnosis
Radiomics
Regression analysis
Retrospective Studies
Risk factors
Statistical analysis
Statistical tests
Support vector machines
Tumors
Viruses
title Preoperative Diagnosis of Dual‐Phenotype Hepatocellular Carcinoma Using Enhanced MRI Radiomics Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preoperative%20Diagnosis%20of%20Dual%E2%80%90Phenotype%20Hepatocellular%20Carcinoma%20Using%20Enhanced%20MRI%20Radiomics%20Models&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Wu,%20Qian&rft.date=2023-04&rft.volume=57&rft.issue=4&rft.spage=1185&rft.epage=1196&rft.pages=1185-1196&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28391&rft_dat=%3Cproquest_cross%3E2720929563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785203831&rft_id=info:pmid/36190656&rfr_iscdi=true