A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing
In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via sali...
Gespeichert in:
Veröffentlicht in: | Psychological review 2023-04, Vol.130 (3), p.807-840 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 840 |
---|---|
container_issue | 3 |
container_start_page | 807 |
container_title | Psychological review |
container_volume | 130 |
creator | Schwetlick, Lisa Backhaus, Daniel Engbert, Ralf |
description | In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here, we propose a scan-path model for both fixation positions and fixation durations, which include influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan-path statistics across individual observers. |
doi_str_mv | 10.1037/rev0000379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720929550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819686900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a434t-980eee97d8e507f6f11d8b9fa232cbb030a82b003fa89a49bb275b594e34e7df3</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_AgipvTi3-AFLyIWE2atkmOY_UXKApO8RbS9FU7u7QmrbL_3oxNBQ_m8sjjw5eXPIT2CT4lmLIzCx_YH8rEBhoSQUVIYkY20dD3aBiJ5HmAdpybLRERYhsNaEoEZgkdomwcZAuj5pVWdfCglQnvVfca3DYF1EHZ2GCq3FuYQQumAKMhyHpbmRdPwUDwVMGnv-2irVLVDvbWdYQeL86nk6vw5u7yejK-CVVM4y4UHAOAYAWHBLMyLQkpeC5KFdFI5zmmWPEo90OXigsVizyPWJInIgYaAytKOkJHq9zWNu89uE7OK6ehrpWBpncyYhEW_r0J9vTwD501vTV-OhlxIlKeCvy_8lkxT3CcenW8Uto2zlkoZWurubILSbBcbkD-bsDjg3Vkn8-h-KHfX-7ByQqoVsnWLbSyXaVrcLq3Fky3DJOEYkklx4x-AaBBja0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720485046</pqid></control><display><type>article</type><title>A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing</title><source>MEDLINE</source><source>APA PsycARTICLES</source><creator>Schwetlick, Lisa ; Backhaus, Daniel ; Engbert, Ralf</creator><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Schwetlick, Lisa ; Backhaus, Daniel ; Engbert, Ralf ; Grigorenko, Elena L</creatorcontrib><description>In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here, we propose a scan-path model for both fixation positions and fixation durations, which include influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan-path statistics across individual observers.</description><identifier>ISSN: 0033-295X</identifier><identifier>EISSN: 1939-1471</identifier><identifier>DOI: 10.1037/rev0000379</identifier><identifier>PMID: 36190753</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Adjustment ; Attention Span ; Bayes Theorem ; Bayesian analysis ; Estimation ; Experiments ; Eye fixation ; Eye Movements ; Fixation ; Fixation, Ocular ; Human ; Humans ; Individual Differences ; Likelihood Functions ; Observation ; Probability ; Sequences ; Statistical Probability ; Task Analysis ; Visual attention ; Visual Field ; Visual Perception</subject><ispartof>Psychological review, 2023-04, Vol.130 (3), p.807-840</ispartof><rights>2022 American Psychological Association</rights><rights>2022, American Psychological Association</rights><rights>Copyright American Psychological Association Apr 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a434t-980eee97d8e507f6f11d8b9fa232cbb030a82b003fa89a49bb275b594e34e7df3</citedby><orcidid>0000-0002-1291-8762 ; 0000-0003-3356-8324 ; 0000-0002-2909-5811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36190753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Grigorenko, Elena L</contributor><creatorcontrib>Schwetlick, Lisa</creatorcontrib><creatorcontrib>Backhaus, Daniel</creatorcontrib><creatorcontrib>Engbert, Ralf</creatorcontrib><title>A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing</title><title>Psychological review</title><addtitle>Psychol Rev</addtitle><description>In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here, we propose a scan-path model for both fixation positions and fixation durations, which include influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan-path statistics across individual observers.</description><subject>Adjustment</subject><subject>Attention Span</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Estimation</subject><subject>Experiments</subject><subject>Eye fixation</subject><subject>Eye Movements</subject><subject>Fixation</subject><subject>Fixation, Ocular</subject><subject>Human</subject><subject>Humans</subject><subject>Individual Differences</subject><subject>Likelihood Functions</subject><subject>Observation</subject><subject>Probability</subject><subject>Sequences</subject><subject>Statistical Probability</subject><subject>Task Analysis</subject><subject>Visual attention</subject><subject>Visual Field</subject><subject>Visual Perception</subject><issn>0033-295X</issn><issn>1939-1471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9LwzAUB_AgipvTi3-AFLyIWE2atkmOY_UXKApO8RbS9FU7u7QmrbL_3oxNBQ_m8sjjw5eXPIT2CT4lmLIzCx_YH8rEBhoSQUVIYkY20dD3aBiJ5HmAdpybLRERYhsNaEoEZgkdomwcZAuj5pVWdfCglQnvVfca3DYF1EHZ2GCq3FuYQQumAKMhyHpbmRdPwUDwVMGnv-2irVLVDvbWdYQeL86nk6vw5u7yejK-CVVM4y4UHAOAYAWHBLMyLQkpeC5KFdFI5zmmWPEo90OXigsVizyPWJInIgYaAytKOkJHq9zWNu89uE7OK6ehrpWBpncyYhEW_r0J9vTwD501vTV-OhlxIlKeCvy_8lkxT3CcenW8Uto2zlkoZWurubILSbBcbkD-bsDjg3Vkn8-h-KHfX-7ByQqoVsnWLbSyXaVrcLq3Fky3DJOEYkklx4x-AaBBja0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Schwetlick, Lisa</creator><creator>Backhaus, Daniel</creator><creator>Engbert, Ralf</creator><general>American Psychological Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1291-8762</orcidid><orcidid>https://orcid.org/0000-0003-3356-8324</orcidid><orcidid>https://orcid.org/0000-0002-2909-5811</orcidid></search><sort><creationdate>20230401</creationdate><title>A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing</title><author>Schwetlick, Lisa ; Backhaus, Daniel ; Engbert, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a434t-980eee97d8e507f6f11d8b9fa232cbb030a82b003fa89a49bb275b594e34e7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjustment</topic><topic>Attention Span</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Estimation</topic><topic>Experiments</topic><topic>Eye fixation</topic><topic>Eye Movements</topic><topic>Fixation</topic><topic>Fixation, Ocular</topic><topic>Human</topic><topic>Humans</topic><topic>Individual Differences</topic><topic>Likelihood Functions</topic><topic>Observation</topic><topic>Probability</topic><topic>Sequences</topic><topic>Statistical Probability</topic><topic>Task Analysis</topic><topic>Visual attention</topic><topic>Visual Field</topic><topic>Visual Perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwetlick, Lisa</creatorcontrib><creatorcontrib>Backhaus, Daniel</creatorcontrib><creatorcontrib>Engbert, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwetlick, Lisa</au><au>Backhaus, Daniel</au><au>Engbert, Ralf</au><au>Grigorenko, Elena L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing</atitle><jtitle>Psychological review</jtitle><addtitle>Psychol Rev</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>130</volume><issue>3</issue><spage>807</spage><epage>840</epage><pages>807-840</pages><issn>0033-295X</issn><eissn>1939-1471</eissn><abstract>In real-world scene perception, human observers generate sequences of fixations to move image patches into the high-acuity center of the visual field. Models of visual attention developed over the last 25 years aim to predict two-dimensional probabilities of gaze positions for a given image via saliency maps. Recently, progress has been made on models for the generation of scan paths under the constraints of saliency as well as attentional and oculomotor restrictions. Experimental research demonstrated that task constraints can have a strong impact on viewing behavior. Here, we propose a scan-path model for both fixation positions and fixation durations, which include influences of task instructions and interindividual differences. Based on an eye-movement experiment with four different task conditions, we estimated model parameters for each individual observer and task condition using a fully Bayesian dynamical modeling framework using a joint spatial-temporal likelihood approach with sequential estimation. Resulting parameter values demonstrate that model properties such as the attentional span are adjusted to task requirements. Posterior predictive checks indicate that our dynamical model can reproduce task differences in scan-path statistics across individual observers.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>36190753</pmid><doi>10.1037/rev0000379</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-1291-8762</orcidid><orcidid>https://orcid.org/0000-0003-3356-8324</orcidid><orcidid>https://orcid.org/0000-0002-2909-5811</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-295X |
ispartof | Psychological review, 2023-04, Vol.130 (3), p.807-840 |
issn | 0033-295X 1939-1471 |
language | eng |
recordid | cdi_proquest_miscellaneous_2720929550 |
source | MEDLINE; APA PsycARTICLES |
subjects | Adjustment Attention Span Bayes Theorem Bayesian analysis Estimation Experiments Eye fixation Eye Movements Fixation Fixation, Ocular Human Humans Individual Differences Likelihood Functions Observation Probability Sequences Statistical Probability Task Analysis Visual attention Visual Field Visual Perception |
title | A Dynamical Scan-Path Model for Task-Dependence During Scene Viewing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamical%20Scan-Path%20Model%20for%20Task-Dependence%20During%20Scene%20Viewing&rft.jtitle=Psychological%20review&rft.au=Schwetlick,%20Lisa&rft.date=2023-04-01&rft.volume=130&rft.issue=3&rft.spage=807&rft.epage=840&rft.pages=807-840&rft.issn=0033-295X&rft.eissn=1939-1471&rft_id=info:doi/10.1037/rev0000379&rft_dat=%3Cproquest_cross%3E2819686900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720485046&rft_id=info:pmid/36190753&rfr_iscdi=true |