Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation

We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 1999-11, Vol.34 (22), p.5497-5503
Hauptverfasser: HUI, P. M, ZHANG, X, MARKWORTH, A. J, STROUD, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5503
container_issue 22
container_start_page 5497
container_title Journal of materials science
container_volume 34
creator HUI, P. M
ZHANG, X
MARKWORTH, A. J
STROUD, D
description We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the film. In the first method, the temperature profile is modeled directly, using a finite element technique in which the film is represented as a discrete network of thermal conductances, randomly distributed according to the assumed composition profile. The temperature at each node, and the effective thermal conductance, is then obtained by a transfer matrix technique. In the second approach, the film is treated by an effective-medium approximation, suitably generalized to account for the composition gradient. The methods are in rough agreement with each other, and suggest that thermophysical properties of the film can be treated reasonably well by approaches generalized from those which succeed in conventional composites.
doi_str_mv 10.1023/A:1004760427981
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27205046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259884548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-687a966e0ebe2155b415773ea2155ffadd7687536622716e26d6bfde050cae6c3</originalsourceid><addsrcrecordid>eNqN0EtLAzEQAOAgCtbq2WtA8baad7K9leILil7qeUk3k5qyLze7Yv-9qXry1EMYMnwzwwxCl5TcUsL43XxGCRFaEcF0bugRmlCpeSYM4cdoQghjGROKnqKzGLeEEKkZnaDN6h362la4bBs3lkP4DMMOtx5veuvApXTdtTEMEPEMv4w19KFMOoZ6rOwQ2iZi27j0MHgP-3rANbgw1th2Xd9-hfqHnaMTb6sIF39xit4e7leLp2z5-vi8mC-zkot8yJTRNlcKCKyBUSnXIi2hOdj9x3vrnE5EcqUY01QBU06tvQMiSWlBlXyKbn77ptkfI8ShqEMsoapsA-0YC6ZZskIdAKnWJheHQGUEpwle_YPbduybtG3BmMyNEVKYpK7_lI3pkr63TRli0fXpUP2uoNRIxhn_Br1Njo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259884548</pqid></control><display><type>article</type><title>Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation</title><source>SpringerLink Journals - AutoHoldings</source><creator>HUI, P. M ; ZHANG, X ; MARKWORTH, A. J ; STROUD, D</creator><creatorcontrib>HUI, P. M ; ZHANG, X ; MARKWORTH, A. J ; STROUD, D</creatorcontrib><description>We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the film. In the first method, the temperature profile is modeled directly, using a finite element technique in which the film is represented as a discrete network of thermal conductances, randomly distributed according to the assumed composition profile. The temperature at each node, and the effective thermal conductance, is then obtained by a transfer matrix technique. In the second approach, the film is treated by an effective-medium approximation, suitably generalized to account for the composition gradient. The methods are in rough agreement with each other, and suggest that thermophysical properties of the film can be treated reasonably well by approaches generalized from those which succeed in conventional composites.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1004760427981</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Approximation ; Composite materials ; Composition ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Effective medium theory ; Exact sciences and technology ; Finite element method ; Heat conductivity ; Heat transfer ; Materials science ; Mathematical analysis ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; Physics ; Temperature gradients ; Temperature profiles ; Thermal conductivity ; Thermophysical properties ; Transfer matrices ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of materials science, 1999-11, Vol.34 (22), p.5497-5503</ispartof><rights>2000 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-687a966e0ebe2155b415773ea2155ffadd7687536622716e26d6bfde050cae6c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1185232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HUI, P. M</creatorcontrib><creatorcontrib>ZHANG, X</creatorcontrib><creatorcontrib>MARKWORTH, A. J</creatorcontrib><creatorcontrib>STROUD, D</creatorcontrib><title>Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation</title><title>Journal of materials science</title><description>We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the film. In the first method, the temperature profile is modeled directly, using a finite element technique in which the film is represented as a discrete network of thermal conductances, randomly distributed according to the assumed composition profile. The temperature at each node, and the effective thermal conductance, is then obtained by a transfer matrix technique. In the second approach, the film is treated by an effective-medium approximation, suitably generalized to account for the composition gradient. The methods are in rough agreement with each other, and suggest that thermophysical properties of the film can be treated reasonably well by approaches generalized from those which succeed in conventional composites.</description><subject>Approximation</subject><subject>Composite materials</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Effective medium theory</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>Physics</subject><subject>Temperature gradients</subject><subject>Temperature profiles</subject><subject>Thermal conductivity</subject><subject>Thermophysical properties</subject><subject>Transfer matrices</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqN0EtLAzEQAOAgCtbq2WtA8baad7K9leILil7qeUk3k5qyLze7Yv-9qXry1EMYMnwzwwxCl5TcUsL43XxGCRFaEcF0bugRmlCpeSYM4cdoQghjGROKnqKzGLeEEKkZnaDN6h362la4bBs3lkP4DMMOtx5veuvApXTdtTEMEPEMv4w19KFMOoZ6rOwQ2iZi27j0MHgP-3rANbgw1th2Xd9-hfqHnaMTb6sIF39xit4e7leLp2z5-vi8mC-zkot8yJTRNlcKCKyBUSnXIi2hOdj9x3vrnE5EcqUY01QBU06tvQMiSWlBlXyKbn77ptkfI8ShqEMsoapsA-0YC6ZZskIdAKnWJheHQGUEpwle_YPbduybtG3BmMyNEVKYpK7_lI3pkr63TRli0fXpUP2uoNRIxhn_Br1Njo4</recordid><startdate>19991115</startdate><enddate>19991115</enddate><creator>HUI, P. M</creator><creator>ZHANG, X</creator><creator>MARKWORTH, A. J</creator><creator>STROUD, D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19991115</creationdate><title>Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation</title><author>HUI, P. M ; ZHANG, X ; MARKWORTH, A. J ; STROUD, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-687a966e0ebe2155b415773ea2155ffadd7687536622716e26d6bfde050cae6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation</topic><topic>Composite materials</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Effective medium theory</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>Physics</topic><topic>Temperature gradients</topic><topic>Temperature profiles</topic><topic>Thermal conductivity</topic><topic>Thermophysical properties</topic><topic>Transfer matrices</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUI, P. M</creatorcontrib><creatorcontrib>ZHANG, X</creatorcontrib><creatorcontrib>MARKWORTH, A. J</creatorcontrib><creatorcontrib>STROUD, D</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUI, P. M</au><au>ZHANG, X</au><au>MARKWORTH, A. J</au><au>STROUD, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation</atitle><jtitle>Journal of materials science</jtitle><date>1999-11-15</date><risdate>1999</risdate><volume>34</volume><issue>22</issue><spage>5497</spage><epage>5503</epage><pages>5497-5503</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>We describe two methods for modeling the thermal conductivity and temperature profile in a graded composite film. The film consists of a random binary composite, whose concentration varies in the direction perpendicular to the film surface, and a fixed temperature difference is applied across the film. In the first method, the temperature profile is modeled directly, using a finite element technique in which the film is represented as a discrete network of thermal conductances, randomly distributed according to the assumed composition profile. The temperature at each node, and the effective thermal conductance, is then obtained by a transfer matrix technique. In the second approach, the film is treated by an effective-medium approximation, suitably generalized to account for the composition gradient. The methods are in rough agreement with each other, and suggest that thermophysical properties of the film can be treated reasonably well by approaches generalized from those which succeed in conventional composites.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1004760427981</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 1999-11, Vol.34 (22), p.5497-5503
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_27205046
source SpringerLink Journals - AutoHoldings
subjects Approximation
Composite materials
Composition
Computer simulation
Condensed matter: structure, mechanical and thermal properties
Effective medium theory
Exact sciences and technology
Finite element method
Heat conductivity
Heat transfer
Materials science
Mathematical analysis
Nonelectronic thermal conduction and heat-pulse propagation in solids
thermal waves
Physics
Temperature gradients
Temperature profiles
Thermal conductivity
Thermophysical properties
Transfer matrices
Transport properties of condensed matter (nonelectronic)
title Thermal conductivity of graded composites : Numerical simulations and an effective medium approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20graded%20composites%20:%20Numerical%20simulations%20and%20an%20effective%20medium%20approximation&rft.jtitle=Journal%20of%20materials%20science&rft.au=HUI,%20P.%20M&rft.date=1999-11-15&rft.volume=34&rft.issue=22&rft.spage=5497&rft.epage=5503&rft.pages=5497-5503&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1004760427981&rft_dat=%3Cproquest_pasca%3E2259884548%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259884548&rft_id=info:pmid/&rfr_iscdi=true