Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation

The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryogenics (Guildford) 2002-11, Vol.42 (11), p.697-704
Hauptverfasser: Bittner-Rohrhofer, K., Humer, K., Fillunger, H., Maix, R.K., Weber, H.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 11
container_start_page 697
container_title Cryogenics (Guildford)
container_volume 42
creator Bittner-Rohrhofer, K.
Humer, K.
Fillunger, H.
Maix, R.K.
Weber, H.W.
description The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m −2 ( E>0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension–tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.
doi_str_mv 10.1016/S0011-2275(02)00142-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27204933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001122750200142X</els_id><sourcerecordid>27191652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-c46dd021748c85f202e94bc2631d469555bf7b50a6c694e94e509bd5e2d809ff3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQgIMoWB8_QchF0UM1ySbZ7kmk-IKKoBW8xWwysZHtRpNdwX9v-kCPeplhZr6ZgQ-hA0pOKaHy7JEQSoeMleKYsJNccDZ83kADOiqr3C7EJhr8INtoJ6U3Qghnkg3Qyx2YmW690Q2uYaY_fYg4ONzNAN9OLx_w9ArPg4UGm-Ab_BpD31rs29Q3uvOhxekrdTDH2nUQcQRtunzAx6itXwJ7aMvpJsH-Ou-ip6vL6fhmOLm_vh1fTIaGS9EtorWE0ZKPzEg4RhhUvDZMFtRyWQkhalfWgmhpZMXzDASpaiuA2RGpnCt20dHq7nsMHz2kTs19MtA0uoXQJ8VKRnhVFP8AaUWlYBkUK9DEkFIEp96jn-v4pShRC_FqKV4trCrC1FK8es57h-sHOmWtLurW-PS7zLksGZeZO19xkLV8eogqGQ-tAesjmE7Z4P_49A0Xtpc-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27191652</pqid></control><display><type>article</type><title>Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation</title><source>Elsevier ScienceDirect Journals</source><creator>Bittner-Rohrhofer, K. ; Humer, K. ; Fillunger, H. ; Maix, R.K. ; Weber, H.W.</creator><creatorcontrib>Bittner-Rohrhofer, K. ; Humer, K. ; Fillunger, H. ; Maix, R.K. ; Weber, H.W.</creatorcontrib><description>The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m −2 ( E&gt;0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension–tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.</description><identifier>ISSN: 0011-2275</identifier><identifier>EISSN: 1879-2235</identifier><identifier>DOI: 10.1016/S0011-2275(02)00142-X</identifier><identifier>CODEN: CRYOAX</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Delamination ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fiber composites ; Installations for energy generation and conversion: thermal and electrical energy ; ITER ; Mechanical properties</subject><ispartof>Cryogenics (Guildford), 2002-11, Vol.42 (11), p.697-704</ispartof><rights>2003 Elsevier Science Ltd</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-c46dd021748c85f202e94bc2631d469555bf7b50a6c694e94e509bd5e2d809ff3</citedby><cites>FETCH-LOGICAL-c465t-c46dd021748c85f202e94bc2631d469555bf7b50a6c694e94e509bd5e2d809ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001122750200142X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14467246$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bittner-Rohrhofer, K.</creatorcontrib><creatorcontrib>Humer, K.</creatorcontrib><creatorcontrib>Fillunger, H.</creatorcontrib><creatorcontrib>Maix, R.K.</creatorcontrib><creatorcontrib>Weber, H.W.</creatorcontrib><title>Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation</title><title>Cryogenics (Guildford)</title><description>The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m −2 ( E&gt;0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension–tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Delamination</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fiber composites</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>ITER</subject><subject>Mechanical properties</subject><issn>0011-2275</issn><issn>1879-2235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEQgIMoWB8_QchF0UM1ySbZ7kmk-IKKoBW8xWwysZHtRpNdwX9v-kCPeplhZr6ZgQ-hA0pOKaHy7JEQSoeMleKYsJNccDZ83kADOiqr3C7EJhr8INtoJ6U3Qghnkg3Qyx2YmW690Q2uYaY_fYg4ONzNAN9OLx_w9ArPg4UGm-Ab_BpD31rs29Q3uvOhxekrdTDH2nUQcQRtunzAx6itXwJ7aMvpJsH-Ou-ip6vL6fhmOLm_vh1fTIaGS9EtorWE0ZKPzEg4RhhUvDZMFtRyWQkhalfWgmhpZMXzDASpaiuA2RGpnCt20dHq7nsMHz2kTs19MtA0uoXQJ8VKRnhVFP8AaUWlYBkUK9DEkFIEp96jn-v4pShRC_FqKV4trCrC1FK8es57h-sHOmWtLurW-PS7zLksGZeZO19xkLV8eogqGQ-tAesjmE7Z4P_49A0Xtpc-</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Bittner-Rohrhofer, K.</creator><creator>Humer, K.</creator><creator>Fillunger, H.</creator><creator>Maix, R.K.</creator><creator>Weber, H.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021101</creationdate><title>Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation</title><author>Bittner-Rohrhofer, K. ; Humer, K. ; Fillunger, H. ; Maix, R.K. ; Weber, H.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-c46dd021748c85f202e94bc2631d469555bf7b50a6c694e94e509bd5e2d809ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Delamination</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fiber composites</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>ITER</topic><topic>Mechanical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bittner-Rohrhofer, K.</creatorcontrib><creatorcontrib>Humer, K.</creatorcontrib><creatorcontrib>Fillunger, H.</creatorcontrib><creatorcontrib>Maix, R.K.</creatorcontrib><creatorcontrib>Weber, H.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bittner-Rohrhofer, K.</au><au>Humer, K.</au><au>Fillunger, H.</au><au>Maix, R.K.</au><au>Weber, H.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>42</volume><issue>11</issue><spage>697</spage><epage>704</epage><pages>697-704</pages><issn>0011-2275</issn><eissn>1879-2235</eissn><coden>CRYOAX</coden><abstract>The mechanical properties of glass fiber reinforced plastics (GFRPs) suggested for the turn and ground insulation of the ITER toroidal field (TF) coils are subject to extensive investigations with respect to their design requirements at present. The insulation system used for the ITER TF model coil, manufactured by European industry, consists of a boron-free R-glass fiber reinforced tape, vacuum-pressure impregnated in a DGEBA epoxy system and partly interleaved with polyimide-foils (e.g. Kapton-H-foils). In order to assess the material performance under the actual operating conditions of ITER-FEAT, the system was irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5×10 21 and 1×10 22 m −2 ( E&gt;0.1 MeV). The composite was screened at 77 K using static tensile, short-beam-shear (SBS) as well as double-lap-shear tests prior to and after irradiation. Furthermore, tension–tension fatigue measurements were done in order to simulate the pulsed ITER-FEAT operation. We observe that the mechanical strength and the fracture behavior of these GFRPs after irradiation are strongly influenced by the three factors: the winding direction of the tape, the quality of fabrication and the delamination process.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0011-2275(02)00142-X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2002-11, Vol.42 (11), p.697-704
issn 0011-2275
1879-2235
language eng
recordid cdi_proquest_miscellaneous_27204933
source Elsevier ScienceDirect Journals
subjects Applied sciences
Controled nuclear fusion plants
Delamination
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fiber composites
Installations for energy generation and conversion: thermal and electrical energy
ITER
Mechanical properties
title Mechanical behavior of the ITER TF model coil ground insulation system after reactor irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behavior%20of%20the%20ITER%20TF%20model%20coil%20ground%20insulation%20system%20after%20reactor%20irradiation&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Bittner-Rohrhofer,%20K.&rft.date=2002-11-01&rft.volume=42&rft.issue=11&rft.spage=697&rft.epage=704&rft.pages=697-704&rft.issn=0011-2275&rft.eissn=1879-2235&rft.coden=CRYOAX&rft_id=info:doi/10.1016/S0011-2275(02)00142-X&rft_dat=%3Cproquest_cross%3E27191652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27191652&rft_id=info:pmid/&rft_els_id=S001122750200142X&rfr_iscdi=true