Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories

Radiographic attributes of lung nodules remedy the shortcomings of lung cancer computer-assisted diagnosis systems, which provides interpretable diagnostic reference for doctors. However, current studies fail to dedicate multi-label classification of lung nodules using convolutional neural networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-01, Vol.42 (1), p.1-1
Hauptverfasser: Yi, Le, Zhang, Lei, Xu, Xiuyuan, Guo, Jixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 42
creator Yi, Le
Zhang, Lei
Xu, Xiuyuan
Guo, Jixiang
description Radiographic attributes of lung nodules remedy the shortcomings of lung cancer computer-assisted diagnosis systems, which provides interpretable diagnostic reference for doctors. However, current studies fail to dedicate multi-label classification of lung nodules using convolutional neural networks (CNNs) and are inferior in exploiting statistical dependency between the labels. In addition, data imbalance is an indispensable problem to be reckoned with when employing CNNs to perform lung nodule classification. It introduces greater challenges especially in the multi-label classification. In this paper, we propose a method called MLSL-Net to discriminate lung nodule characteristics and simultaneously address the challenges. Particularly, the proposal employs multi-label softmax loss (MLSL) as the performance index, aiming to reduce the ranking errors between the labels and within the labels during training, thereby optimizing ranking loss and AUC directly. Such criterions can better evaluate the classifier's performance on the multi-label imbalanced dataset. Furthermore, a scale factor is introduced based on the investigation of the max surrogate function. Different from preceding usages, the small factor is used so that to narrow the discrepancy of gradients produced by different labels. More interestingly, this factor also facilitates the exploit of label dependency. Experimental results on the LIDC-IDRI dataset as well as another akin dataset demonstrate that MLSL-Net can effectively perform multi-label classification despite the imbalance issue. Meanwhile, the results confirm the responsibility of the factor for capturing label correlations, accordingly leading to more accurate predictions.
doi_str_mv 10.1109/TMI.2022.3211085
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720431992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9906105</ieee_id><sourcerecordid>2759401579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-7a8190bb8fea4c799f823454d04003e28db2041f3518c15ea5a3666e7120a5b03</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaDZp74VCEfSSi7ejL1s6ltCPQEIuKfRmZHsctJWlrWSR5r-Pwm5z6GkY5vcew3uEvGewZQzM57ubqy0HzreC112rV2TDlNINV_LXa7IB3ukGoOWn5CznHQCTCswbcipa1mlj5IbsbopfXePtgJ7mOK-L_UsDrg8x_c50jonui19isOmRhjgVj3T0Nmc3u9GuLgZasgv3tITBehtGnKgNE51wj2HCsNJK4X1MDvNbcjJbn_HdcZ6Tn9--3l3-aK5vv19dfrluRiG7temsZgaGQc9o5dgZM2supJITSACBXE8DB8lmoZgemUKrrGjbFjvGwaoBxDm5OPjuU_xTMK_94vKIvr6HseSed1UvmDG8op_-Q3expFC_q5QyEpjqTKXgQI0p5pxw7vfJLTWRnkH_3ENfe-ife-iPPVTJx6NxGRacXgT_gq_AhwPgEPHlbAy0DJR4AkxgjIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759401579</pqid></control><display><type>article</type><title>Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories</title><source>IEEE/IET Electronic Library</source><creator>Yi, Le ; Zhang, Lei ; Xu, Xiuyuan ; Guo, Jixiang</creator><creatorcontrib>Yi, Le ; Zhang, Lei ; Xu, Xiuyuan ; Guo, Jixiang</creatorcontrib><description>Radiographic attributes of lung nodules remedy the shortcomings of lung cancer computer-assisted diagnosis systems, which provides interpretable diagnostic reference for doctors. However, current studies fail to dedicate multi-label classification of lung nodules using convolutional neural networks (CNNs) and are inferior in exploiting statistical dependency between the labels. In addition, data imbalance is an indispensable problem to be reckoned with when employing CNNs to perform lung nodule classification. It introduces greater challenges especially in the multi-label classification. In this paper, we propose a method called MLSL-Net to discriminate lung nodule characteristics and simultaneously address the challenges. Particularly, the proposal employs multi-label softmax loss (MLSL) as the performance index, aiming to reduce the ranking errors between the labels and within the labels during training, thereby optimizing ranking loss and AUC directly. Such criterions can better evaluate the classifier's performance on the multi-label imbalanced dataset. Furthermore, a scale factor is introduced based on the investigation of the max surrogate function. Different from preceding usages, the small factor is used so that to narrow the discrepancy of gradients produced by different labels. More interestingly, this factor also facilitates the exploit of label dependency. Experimental results on the LIDC-IDRI dataset as well as another akin dataset demonstrate that MLSL-Net can effectively perform multi-label classification despite the imbalance issue. Meanwhile, the results confirm the responsibility of the factor for capturing label correlations, accordingly leading to more accurate predictions.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3211085</identifier><identifier>PMID: 36178994</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Category imbalance ; Classification ; Computed tomography ; convolutional neural network ; Datasets ; Feature extraction ; Humans ; Indexes ; label dependency ; Labels ; Lung ; Lung cancer ; Lung Neoplasms - diagnostic imaging ; lung nodule classification ; Lung nodules ; Morphology ; multi-label classification ; Neural networks ; Neural Networks, Computer ; Nodules ; Performance indices ; Radiographic Image Interpretation, Computer-Assisted - methods ; Ranking ; Solitary Pulmonary Nodule - diagnostic imaging ; Task analysis ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2023-01, Vol.42 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-7a8190bb8fea4c799f823454d04003e28db2041f3518c15ea5a3666e7120a5b03</citedby><cites>FETCH-LOGICAL-c347t-7a8190bb8fea4c799f823454d04003e28db2041f3518c15ea5a3666e7120a5b03</cites><orcidid>0000-0002-9702-6738 ; 0000-0002-1678-8205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9906105$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9906105$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36178994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Le</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xu, Xiuyuan</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><title>Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Radiographic attributes of lung nodules remedy the shortcomings of lung cancer computer-assisted diagnosis systems, which provides interpretable diagnostic reference for doctors. However, current studies fail to dedicate multi-label classification of lung nodules using convolutional neural networks (CNNs) and are inferior in exploiting statistical dependency between the labels. In addition, data imbalance is an indispensable problem to be reckoned with when employing CNNs to perform lung nodule classification. It introduces greater challenges especially in the multi-label classification. In this paper, we propose a method called MLSL-Net to discriminate lung nodule characteristics and simultaneously address the challenges. Particularly, the proposal employs multi-label softmax loss (MLSL) as the performance index, aiming to reduce the ranking errors between the labels and within the labels during training, thereby optimizing ranking loss and AUC directly. Such criterions can better evaluate the classifier's performance on the multi-label imbalanced dataset. Furthermore, a scale factor is introduced based on the investigation of the max surrogate function. Different from preceding usages, the small factor is used so that to narrow the discrepancy of gradients produced by different labels. More interestingly, this factor also facilitates the exploit of label dependency. Experimental results on the LIDC-IDRI dataset as well as another akin dataset demonstrate that MLSL-Net can effectively perform multi-label classification despite the imbalance issue. Meanwhile, the results confirm the responsibility of the factor for capturing label correlations, accordingly leading to more accurate predictions.</description><subject>Artificial neural networks</subject><subject>Category imbalance</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Indexes</subject><subject>label dependency</subject><subject>Labels</subject><subject>Lung</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>lung nodule classification</subject><subject>Lung nodules</subject><subject>Morphology</subject><subject>multi-label classification</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nodules</subject><subject>Performance indices</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Ranking</subject><subject>Solitary Pulmonary Nodule - diagnostic imaging</subject><subject>Task analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaDZp74VCEfSSi7ejL1s6ltCPQEIuKfRmZHsctJWlrWSR5r-Pwm5z6GkY5vcew3uEvGewZQzM57ubqy0HzreC112rV2TDlNINV_LXa7IB3ukGoOWn5CznHQCTCswbcipa1mlj5IbsbopfXePtgJ7mOK-L_UsDrg8x_c50jonui19isOmRhjgVj3T0Nmc3u9GuLgZasgv3tITBehtGnKgNE51wj2HCsNJK4X1MDvNbcjJbn_HdcZ6Tn9--3l3-aK5vv19dfrluRiG7temsZgaGQc9o5dgZM2supJITSACBXE8DB8lmoZgemUKrrGjbFjvGwaoBxDm5OPjuU_xTMK_94vKIvr6HseSed1UvmDG8op_-Q3expFC_q5QyEpjqTKXgQI0p5pxw7vfJLTWRnkH_3ENfe-ife-iPPVTJx6NxGRacXgT_gq_AhwPgEPHlbAy0DJR4AkxgjIY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yi, Le</creator><creator>Zhang, Lei</creator><creator>Xu, Xiuyuan</creator><creator>Guo, Jixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9702-6738</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></search><sort><creationdate>20230101</creationdate><title>Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories</title><author>Yi, Le ; Zhang, Lei ; Xu, Xiuyuan ; Guo, Jixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-7a8190bb8fea4c799f823454d04003e28db2041f3518c15ea5a3666e7120a5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Category imbalance</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Indexes</topic><topic>label dependency</topic><topic>Labels</topic><topic>Lung</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>lung nodule classification</topic><topic>Lung nodules</topic><topic>Morphology</topic><topic>multi-label classification</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nodules</topic><topic>Performance indices</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Ranking</topic><topic>Solitary Pulmonary Nodule - diagnostic imaging</topic><topic>Task analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Yi, Le</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xu, Xiuyuan</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Le</au><au>Zhang, Lei</au><au>Xu, Xiuyuan</au><au>Guo, Jixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Radiographic attributes of lung nodules remedy the shortcomings of lung cancer computer-assisted diagnosis systems, which provides interpretable diagnostic reference for doctors. However, current studies fail to dedicate multi-label classification of lung nodules using convolutional neural networks (CNNs) and are inferior in exploiting statistical dependency between the labels. In addition, data imbalance is an indispensable problem to be reckoned with when employing CNNs to perform lung nodule classification. It introduces greater challenges especially in the multi-label classification. In this paper, we propose a method called MLSL-Net to discriminate lung nodule characteristics and simultaneously address the challenges. Particularly, the proposal employs multi-label softmax loss (MLSL) as the performance index, aiming to reduce the ranking errors between the labels and within the labels during training, thereby optimizing ranking loss and AUC directly. Such criterions can better evaluate the classifier's performance on the multi-label imbalanced dataset. Furthermore, a scale factor is introduced based on the investigation of the max surrogate function. Different from preceding usages, the small factor is used so that to narrow the discrepancy of gradients produced by different labels. More interestingly, this factor also facilitates the exploit of label dependency. Experimental results on the LIDC-IDRI dataset as well as another akin dataset demonstrate that MLSL-Net can effectively perform multi-label classification despite the imbalance issue. Meanwhile, the results confirm the responsibility of the factor for capturing label correlations, accordingly leading to more accurate predictions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36178994</pmid><doi>10.1109/TMI.2022.3211085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9702-6738</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-01, Vol.42 (1), p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2720431992
source IEEE/IET Electronic Library
subjects Artificial neural networks
Category imbalance
Classification
Computed tomography
convolutional neural network
Datasets
Feature extraction
Humans
Indexes
label dependency
Labels
Lung
Lung cancer
Lung Neoplasms - diagnostic imaging
lung nodule classification
Lung nodules
Morphology
multi-label classification
Neural networks
Neural Networks, Computer
Nodules
Performance indices
Radiographic Image Interpretation, Computer-Assisted - methods
Ranking
Solitary Pulmonary Nodule - diagnostic imaging
Task analysis
Tomography, X-Ray Computed - methods
title Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-label%20softmax%20networks%20for%20pulmonary%20nodule%20classification%20using%20unbalanced%20and%20dependent%20categories&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Yi,%20Le&rft.date=2023-01-01&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3211085&rft_dat=%3Cproquest_RIE%3E2759401579%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759401579&rft_id=info:pmid/36178994&rft_ieee_id=9906105&rfr_iscdi=true