Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions
In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2022-09, Vol.32 (9), p.093120-093120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 093120 |
---|---|
container_issue | 9 |
container_start_page | 093120 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 32 |
creator | Lv, Cong Qiu, Deqin Liu, Q. P. |
description | In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality. |
doi_str_mv | 10.1063/5.0088293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720429106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714963667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pg98g4IsKnZe0TdtHGeqEgSD6XLIkZRltUpNU2ZvfwW_oJzFjQ0HBp7uDH3_uDqFTAhMCLL3KJwBlSat0D40IlFVSsJLub_o8S0gOcIiOvF8BAKFpPkLiUauOG_P5_jHT7UK5gHnfO8vFEgeLw5tNhO16a5QJuLNSN1pJ7JfWhaQfWq-wX_ugOsyNxDp4bKxpreAtdkoOImhr_DE6aHikJ7s6Rs-3N0_TWTJ_uLufXs8TkTIISVVIrngBokoXAnIFcZRNBovYM1JQRqjIRKWqNCulKhrWUFXmkJJ4CWMU0jE63-bG_V8G5UPdaS9U23Kj7OBrWlDIaLX50xid_aIrOzgTt4uKZBWLiUVUF1slnPXeqabune64W9cE6k1Mnde7d0d7ubVe6MA3d3_jV-t-YN3L5j_8N_kLHuGPZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714963667</pqid></control><display><type>article</type><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</creator><creatorcontrib>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</creatorcontrib><description>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0088293</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Cauchy problems ; Defocusing ; Mathematical analysis ; Short pulses ; Solitary waves</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-09, Vol.32 (9), p.093120-093120</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</citedby><cites>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</cites><orcidid>0000-0001-5108-3676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids></links><search><creatorcontrib>Lv, Cong</creatorcontrib><creatorcontrib>Qiu, Deqin</creatorcontrib><creatorcontrib>Liu, Q. P.</creatorcontrib><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><title>Chaos (Woodbury, N.Y.)</title><description>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</description><subject>Boundary conditions</subject><subject>Cauchy problems</subject><subject>Defocusing</subject><subject>Mathematical analysis</subject><subject>Short pulses</subject><subject>Solitary waves</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCs7pg98g4IsKnZe0TdtHGeqEgSD6XLIkZRltUpNU2ZvfwW_oJzFjQ0HBp7uDH3_uDqFTAhMCLL3KJwBlSat0D40IlFVSsJLub_o8S0gOcIiOvF8BAKFpPkLiUauOG_P5_jHT7UK5gHnfO8vFEgeLw5tNhO16a5QJuLNSN1pJ7JfWhaQfWq-wX_ugOsyNxDp4bKxpreAtdkoOImhr_DE6aHikJ7s6Rs-3N0_TWTJ_uLufXs8TkTIISVVIrngBokoXAnIFcZRNBovYM1JQRqjIRKWqNCulKhrWUFXmkJJ4CWMU0jE63-bG_V8G5UPdaS9U23Kj7OBrWlDIaLX50xid_aIrOzgTt4uKZBWLiUVUF1slnPXeqabune64W9cE6k1Mnde7d0d7ubVe6MA3d3_jV-t-YN3L5j_8N_kLHuGPZA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Lv, Cong</creator><creator>Qiu, Deqin</creator><creator>Liu, Q. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5108-3676</orcidid></search><sort><creationdate>202209</creationdate><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><author>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Cauchy problems</topic><topic>Defocusing</topic><topic>Mathematical analysis</topic><topic>Short pulses</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Cong</creatorcontrib><creatorcontrib>Qiu, Deqin</creatorcontrib><creatorcontrib>Liu, Q. P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Cong</au><au>Qiu, Deqin</au><au>Liu, Q. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><spage>093120</spage><epage>093120</epage><pages>093120-093120</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088293</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5108-3676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2022-09, Vol.32 (9), p.093120-093120 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_proquest_miscellaneous_2720429106 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary conditions Cauchy problems Defocusing Mathematical analysis Short pulses Solitary waves |
title | Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert%20approach%20to%20two-component%20modified%20short-pulse%20system%20and%20its%20nonlocal%20reductions&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lv,%20Cong&rft.date=2022-09&rft.volume=32&rft.issue=9&rft.spage=093120&rft.epage=093120&rft.pages=093120-093120&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0088293&rft_dat=%3Cproquest_scita%3E2714963667%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714963667&rft_id=info:pmid/&rfr_iscdi=true |