Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions

In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2022-09, Vol.32 (9), p.093120-093120
Hauptverfasser: Lv, Cong, Qiu, Deqin, Liu, Q. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 093120
container_issue 9
container_start_page 093120
container_title Chaos (Woodbury, N.Y.)
container_volume 32
creator Lv, Cong
Qiu, Deqin
Liu, Q. P.
description In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.
doi_str_mv 10.1063/5.0088293
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720429106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714963667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</originalsourceid><addsrcrecordid>eNp90FFLwzAQB_AgCs7pg98g4IsKnZe0TdtHGeqEgSD6XLIkZRltUpNU2ZvfwW_oJzFjQ0HBp7uDH3_uDqFTAhMCLL3KJwBlSat0D40IlFVSsJLub_o8S0gOcIiOvF8BAKFpPkLiUauOG_P5_jHT7UK5gHnfO8vFEgeLw5tNhO16a5QJuLNSN1pJ7JfWhaQfWq-wX_ugOsyNxDp4bKxpreAtdkoOImhr_DE6aHikJ7s6Rs-3N0_TWTJ_uLufXs8TkTIISVVIrngBokoXAnIFcZRNBovYM1JQRqjIRKWqNCulKhrWUFXmkJJ4CWMU0jE63-bG_V8G5UPdaS9U23Kj7OBrWlDIaLX50xid_aIrOzgTt4uKZBWLiUVUF1slnPXeqabune64W9cE6k1Mnde7d0d7ubVe6MA3d3_jV-t-YN3L5j_8N_kLHuGPZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714963667</pqid></control><display><type>article</type><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</creator><creatorcontrib>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</creatorcontrib><description>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0088293</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary conditions ; Cauchy problems ; Defocusing ; Mathematical analysis ; Short pulses ; Solitary waves</subject><ispartof>Chaos (Woodbury, N.Y.), 2022-09, Vol.32 (9), p.093120-093120</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</citedby><cites>FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</cites><orcidid>0000-0001-5108-3676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids></links><search><creatorcontrib>Lv, Cong</creatorcontrib><creatorcontrib>Qiu, Deqin</creatorcontrib><creatorcontrib>Liu, Q. P.</creatorcontrib><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><title>Chaos (Woodbury, N.Y.)</title><description>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</description><subject>Boundary conditions</subject><subject>Cauchy problems</subject><subject>Defocusing</subject><subject>Mathematical analysis</subject><subject>Short pulses</subject><subject>Solitary waves</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90FFLwzAQB_AgCs7pg98g4IsKnZe0TdtHGeqEgSD6XLIkZRltUpNU2ZvfwW_oJzFjQ0HBp7uDH3_uDqFTAhMCLL3KJwBlSat0D40IlFVSsJLub_o8S0gOcIiOvF8BAKFpPkLiUauOG_P5_jHT7UK5gHnfO8vFEgeLw5tNhO16a5QJuLNSN1pJ7JfWhaQfWq-wX_ugOsyNxDp4bKxpreAtdkoOImhr_DE6aHikJ7s6Rs-3N0_TWTJ_uLufXs8TkTIISVVIrngBokoXAnIFcZRNBovYM1JQRqjIRKWqNCulKhrWUFXmkJJ4CWMU0jE63-bG_V8G5UPdaS9U23Kj7OBrWlDIaLX50xid_aIrOzgTt4uKZBWLiUVUF1slnPXeqabune64W9cE6k1Mnde7d0d7ubVe6MA3d3_jV-t-YN3L5j_8N_kLHuGPZA</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Lv, Cong</creator><creator>Qiu, Deqin</creator><creator>Liu, Q. P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5108-3676</orcidid></search><sort><creationdate>202209</creationdate><title>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</title><author>Lv, Cong ; Qiu, Deqin ; Liu, Q. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-97daea70c93bc05e0daedf40b05e6172612c4c9e9348de7f6f2e8503112366203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Cauchy problems</topic><topic>Defocusing</topic><topic>Mathematical analysis</topic><topic>Short pulses</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Cong</creatorcontrib><creatorcontrib>Qiu, Deqin</creatorcontrib><creatorcontrib>Liu, Q. P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Cong</au><au>Qiu, Deqin</au><au>Liu, Q. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>32</volume><issue>9</issue><spage>093120</spage><epage>093120</epage><pages>093120-093120</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this paper, a Riemann–Hilbert approach to a two-component modified short-pulse (mSP) system on the line with zero boundary conditions is developed. A parametric representation of the solution to the related Cauchy problem is obtained. Four nonlocal integrable reductions, namely, the real reverse space-time nonlocal focusing and defocusing mSP equations and the complex reverse space-time nonlocal focusing and defocusing mSP equations, are studied in detail. For each case, soliton solutions are presented, and, unlike their local counterparts, the nonlocal equations exhibit certain novel properties induced by the impact of nonlocality.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088293</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5108-3676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2022-09, Vol.32 (9), p.093120-093120
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2720429106
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Cauchy problems
Defocusing
Mathematical analysis
Short pulses
Solitary waves
title Riemann–Hilbert approach to two-component modified short-pulse system and its nonlocal reductions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%E2%80%93Hilbert%20approach%20to%20two-component%20modified%20short-pulse%20system%20and%20its%20nonlocal%20reductions&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lv,%20Cong&rft.date=2022-09&rft.volume=32&rft.issue=9&rft.spage=093120&rft.epage=093120&rft.pages=093120-093120&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0088293&rft_dat=%3Cproquest_scita%3E2714963667%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714963667&rft_id=info:pmid/&rfr_iscdi=true