Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach

The method's development to detect oil-spills, and concentration monitoring of marine environments, are essential in emergency response. To develop a classification model, this work was based on the spectral response of surfaces using reflectance data, and machine learning (ML) techniques, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2022-11, Vol.184, p.114132-114132, Article 114132
Hauptverfasser: Trujillo-Acatitla, Rubicel, Tuxpan-Vargas, José, Ovando-Vázquez, Cesaré
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114132
container_issue
container_start_page 114132
container_title Marine pollution bulletin
container_volume 184
creator Trujillo-Acatitla, Rubicel
Tuxpan-Vargas, José
Ovando-Vázquez, Cesaré
description The method's development to detect oil-spills, and concentration monitoring of marine environments, are essential in emergency response. To develop a classification model, this work was based on the spectral response of surfaces using reflectance data, and machine learning (ML) techniques, with the objective of detecting oil in Landsat imagery. Additionally, different concentration oil data were used to obtain a concentration-estimation model. In the classification, K-Nearest Neighbor (KNN) obtained the best approximations in oil detection using Blue (0.453–0.520 μm), NIR (0.790–0.891 μm), SWIR1 (1.557–1.717 μm), and SWIR2 (1.960–2.162 μm) bands for 2010 spill images. In the concentration model, the mean absolute error (MAE) was 1.41 and 3.34, for training and validation data. When testing the concentration-estimation model in images where oil was detected, the concentration-estimation obtained was between 40 and 60 %. This demonstrates the potential use of ML techniques and spectral response data to detect and estimate the concentration of oil-spills. [Display omitted] •The visible 0.453–0.520 μm and infrared 0.790–2.162 μm spectral ranges are of major importance in oil detection.•A ML model with nonlinearity characteristics generates good approximations in the detection of oil.•Different oil concentrations from public spectral response data help make estimations in optical imaging.•There is an inverse correlation between oil concentration and spectral reflectance acquired by an optical sensor.
doi_str_mv 10.1016/j.marpolbul.2022.114132
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720427352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X22008141</els_id><sourcerecordid>2720427352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-73465123be14015ea341488fd0904049e68e4c506f20eab64e2a82fb110a0b613</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDXjJgpTxI4-yq3hLlboBiZ3lOJPiynWCnSL173EJYstqRlczd-4cQi4ZzBiw4mYz2-rQd67euRkHzmeMSSb4EZmwqpxnQhTimEwAeJ4JXryfkrMYNwBQ8pJNSLOyjsbeOhdv6T0OaAbbeap9Q03nDfoh6B8F42C3Y2s9jXpA5-yANIlrDPtrqulWmw_rkTrUwVu_prrvQ5fEc3LSahfx4rdOydvjw-vdc7ZcPb3cLZaZEbIaslLIImdc1MgksBy1kExWVdvAHCTIORYVSpND0XJAXRcSua54WzMGGuqCiSm5Gn3T2c9dSqy2NpoUVHvsdlHxkoPkpch5Gi3HURO6GAO2qg_plbBXDNSBq9qoP67qwFWNXNPmYtzE9MmXxaCisZhQNTYkeqrp7L8e3y46hew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720427352</pqid></control><display><type>article</type><title>Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach</title><source>Elsevier ScienceDirect Journals</source><creator>Trujillo-Acatitla, Rubicel ; Tuxpan-Vargas, José ; Ovando-Vázquez, Cesaré</creator><creatorcontrib>Trujillo-Acatitla, Rubicel ; Tuxpan-Vargas, José ; Ovando-Vázquez, Cesaré</creatorcontrib><description>The method's development to detect oil-spills, and concentration monitoring of marine environments, are essential in emergency response. To develop a classification model, this work was based on the spectral response of surfaces using reflectance data, and machine learning (ML) techniques, with the objective of detecting oil in Landsat imagery. Additionally, different concentration oil data were used to obtain a concentration-estimation model. In the classification, K-Nearest Neighbor (KNN) obtained the best approximations in oil detection using Blue (0.453–0.520 μm), NIR (0.790–0.891 μm), SWIR1 (1.557–1.717 μm), and SWIR2 (1.960–2.162 μm) bands for 2010 spill images. In the concentration model, the mean absolute error (MAE) was 1.41 and 3.34, for training and validation data. When testing the concentration-estimation model in images where oil was detected, the concentration-estimation obtained was between 40 and 60 %. This demonstrates the potential use of ML techniques and spectral response data to detect and estimate the concentration of oil-spills. [Display omitted] •The visible 0.453–0.520 μm and infrared 0.790–2.162 μm spectral ranges are of major importance in oil detection.•A ML model with nonlinearity characteristics generates good approximations in the detection of oil.•Different oil concentrations from public spectral response data help make estimations in optical imaging.•There is an inverse correlation between oil concentration and spectral reflectance acquired by an optical sensor.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2022.114132</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Landsat ; Machine learning ; Oil concentration ; Oil spill ; Spectral response</subject><ispartof>Marine pollution bulletin, 2022-11, Vol.184, p.114132-114132, Article 114132</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-73465123be14015ea341488fd0904049e68e4c506f20eab64e2a82fb110a0b613</citedby><cites>FETCH-LOGICAL-c348t-73465123be14015ea341488fd0904049e68e4c506f20eab64e2a82fb110a0b613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025326X22008141$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Trujillo-Acatitla, Rubicel</creatorcontrib><creatorcontrib>Tuxpan-Vargas, José</creatorcontrib><creatorcontrib>Ovando-Vázquez, Cesaré</creatorcontrib><title>Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach</title><title>Marine pollution bulletin</title><description>The method's development to detect oil-spills, and concentration monitoring of marine environments, are essential in emergency response. To develop a classification model, this work was based on the spectral response of surfaces using reflectance data, and machine learning (ML) techniques, with the objective of detecting oil in Landsat imagery. Additionally, different concentration oil data were used to obtain a concentration-estimation model. In the classification, K-Nearest Neighbor (KNN) obtained the best approximations in oil detection using Blue (0.453–0.520 μm), NIR (0.790–0.891 μm), SWIR1 (1.557–1.717 μm), and SWIR2 (1.960–2.162 μm) bands for 2010 spill images. In the concentration model, the mean absolute error (MAE) was 1.41 and 3.34, for training and validation data. When testing the concentration-estimation model in images where oil was detected, the concentration-estimation obtained was between 40 and 60 %. This demonstrates the potential use of ML techniques and spectral response data to detect and estimate the concentration of oil-spills. [Display omitted] •The visible 0.453–0.520 μm and infrared 0.790–2.162 μm spectral ranges are of major importance in oil detection.•A ML model with nonlinearity characteristics generates good approximations in the detection of oil.•Different oil concentrations from public spectral response data help make estimations in optical imaging.•There is an inverse correlation between oil concentration and spectral reflectance acquired by an optical sensor.</description><subject>Landsat</subject><subject>Machine learning</subject><subject>Oil concentration</subject><subject>Oil spill</subject><subject>Spectral response</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDXjJgpTxI4-yq3hLlboBiZ3lOJPiynWCnSL173EJYstqRlczd-4cQi4ZzBiw4mYz2-rQd67euRkHzmeMSSb4EZmwqpxnQhTimEwAeJ4JXryfkrMYNwBQ8pJNSLOyjsbeOhdv6T0OaAbbeap9Q03nDfoh6B8F42C3Y2s9jXpA5-yANIlrDPtrqulWmw_rkTrUwVu_prrvQ5fEc3LSahfx4rdOydvjw-vdc7ZcPb3cLZaZEbIaslLIImdc1MgksBy1kExWVdvAHCTIORYVSpND0XJAXRcSua54WzMGGuqCiSm5Gn3T2c9dSqy2NpoUVHvsdlHxkoPkpch5Gi3HURO6GAO2qg_plbBXDNSBq9qoP67qwFWNXNPmYtzE9MmXxaCisZhQNTYkeqrp7L8e3y46hew</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Trujillo-Acatitla, Rubicel</creator><creator>Tuxpan-Vargas, José</creator><creator>Ovando-Vázquez, Cesaré</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202211</creationdate><title>Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach</title><author>Trujillo-Acatitla, Rubicel ; Tuxpan-Vargas, José ; Ovando-Vázquez, Cesaré</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-73465123be14015ea341488fd0904049e68e4c506f20eab64e2a82fb110a0b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Landsat</topic><topic>Machine learning</topic><topic>Oil concentration</topic><topic>Oil spill</topic><topic>Spectral response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trujillo-Acatitla, Rubicel</creatorcontrib><creatorcontrib>Tuxpan-Vargas, José</creatorcontrib><creatorcontrib>Ovando-Vázquez, Cesaré</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trujillo-Acatitla, Rubicel</au><au>Tuxpan-Vargas, José</au><au>Ovando-Vázquez, Cesaré</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach</atitle><jtitle>Marine pollution bulletin</jtitle><date>2022-11</date><risdate>2022</risdate><volume>184</volume><spage>114132</spage><epage>114132</epage><pages>114132-114132</pages><artnum>114132</artnum><issn>0025-326X</issn><eissn>1879-3363</eissn><abstract>The method's development to detect oil-spills, and concentration monitoring of marine environments, are essential in emergency response. To develop a classification model, this work was based on the spectral response of surfaces using reflectance data, and machine learning (ML) techniques, with the objective of detecting oil in Landsat imagery. Additionally, different concentration oil data were used to obtain a concentration-estimation model. In the classification, K-Nearest Neighbor (KNN) obtained the best approximations in oil detection using Blue (0.453–0.520 μm), NIR (0.790–0.891 μm), SWIR1 (1.557–1.717 μm), and SWIR2 (1.960–2.162 μm) bands for 2010 spill images. In the concentration model, the mean absolute error (MAE) was 1.41 and 3.34, for training and validation data. When testing the concentration-estimation model in images where oil was detected, the concentration-estimation obtained was between 40 and 60 %. This demonstrates the potential use of ML techniques and spectral response data to detect and estimate the concentration of oil-spills. [Display omitted] •The visible 0.453–0.520 μm and infrared 0.790–2.162 μm spectral ranges are of major importance in oil detection.•A ML model with nonlinearity characteristics generates good approximations in the detection of oil.•Different oil concentrations from public spectral response data help make estimations in optical imaging.•There is an inverse correlation between oil concentration and spectral reflectance acquired by an optical sensor.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.marpolbul.2022.114132</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2022-11, Vol.184, p.114132-114132, Article 114132
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_2720427352
source Elsevier ScienceDirect Journals
subjects Landsat
Machine learning
Oil concentration
Oil spill
Spectral response
title Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oil%20spills:%20Detection%20and%20concentration%20estimation%20in%20satellite%20imagery,%20a%20machine%20learning%20approach&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Trujillo-Acatitla,%20Rubicel&rft.date=2022-11&rft.volume=184&rft.spage=114132&rft.epage=114132&rft.pages=114132-114132&rft.artnum=114132&rft.issn=0025-326X&rft.eissn=1879-3363&rft_id=info:doi/10.1016/j.marpolbul.2022.114132&rft_dat=%3Cproquest_cross%3E2720427352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720427352&rft_id=info:pmid/&rft_els_id=S0025326X22008141&rfr_iscdi=true