Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine

Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2022-12, Vol.14 (12), p.1405-1412
Hauptverfasser: Recio, Pedro, Alessandrini, Silvia, Vanuzzo, Gianmarco, Pannacci, Giacomo, Baggioli, Alberto, Marchione, Demian, Caracciolo, Adriana, Murray, Vanessa J., Casavecchia, Piergiorgio, Balucani, Nadia, Cavallotti, Carlo, Puzzarini, Cristina, Barone, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1412
container_issue 12
container_start_page 1405
container_title Nature chemistry
container_volume 14
creator Recio, Pedro
Alessandrini, Silvia
Vanuzzo, Gianmarco
Pannacci, Giacomo
Baggioli, Alberto
Marchione, Demian
Caracciolo, Adriana
Murray, Vanessa J.
Casavecchia, Piergiorgio
Balucani, Nadia
Cavallotti, Carlo
Puzzarini, Cristina
Barone, Vincenzo
description Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reaction barrier can control the rate of bimolecular reactions for weakly coupled potential energy surfaces, even in the absence of heavy atoms. For O( 3 P) plus pyridine, a reaction relevant to combustion, astrochemistry and biochemistry, crossed-beam experiments indicate that the dominant products are pyrrole and CO, obtained through a spin-forbidden ring-contraction mechanism. The experimental findings are interpreted—by high-level quantum-chemical calculations and statistical non-adiabatic computations of branching fractions—in terms of an efficient intersystem crossing occurring before the high entrance barrier for O-atom addition to the N-atom lone pair. At low to moderate temperatures, the computed reaction rates prove to be dominated by intersystem crossing. Intersystem crossing in reaction entrance channels usually arises from ‘heavy-atom’ effects. Now molecular-beam experiments show that even without heavy atoms, the O( 3 P) + pyridine reaction leads to spin-forbidden pyrrole + CO products. Theoretical calculations reveal efficient intersystem crossing before the entrance barrier for O-atom addition to the N-atom lone pair, which dominates reactivity at low to moderate temperatures.
doi_str_mv 10.1038/s41557-022-01047-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2720426039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755009040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-254e5fae413758bcf11573cb44194ec7b67b16fee3db44a34f63e1375d8a6e053</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4Mobk7_AQ8S8DIP1aRJmu0owx8DYYJ6Dmn6unW06UxaZP-96TonePCUvPc-75vwQeiSkltK2OTOcyqEjEgcR4QSLiN2hIZUChFxxqfHhzsjA3Tm_ZqQRDCanKIBS7oR5UP0NrcNOL_1DVTYuNr7wi5xYXGzAgy2cdoawGalrYUS1_mu70CbpqhtVy_G7PUGfxXNCm-2rsgKC-foJNelh4v9OUIfjw_vs-foZfE0n92_RIZJ0USx4CByDZyGcpKanFIhmUk5p1MORqaJTGmSA7As9DTjecKgY7OJToAINkLjPnfj6s8WfKOqwhsoS22hbr2KZUx4nBA2Dej1H3Rdt86G3wVKCEKmhJNAxT21E-EgVxtXVNptFSWqU6565SooVzvlioWlq310m1aQHVZ-HAeA9YAPI7sE9_v2P7Hf-yuKeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755009040</pqid></control><display><type>article</type><title>Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Recio, Pedro ; Alessandrini, Silvia ; Vanuzzo, Gianmarco ; Pannacci, Giacomo ; Baggioli, Alberto ; Marchione, Demian ; Caracciolo, Adriana ; Murray, Vanessa J. ; Casavecchia, Piergiorgio ; Balucani, Nadia ; Cavallotti, Carlo ; Puzzarini, Cristina ; Barone, Vincenzo</creator><creatorcontrib>Recio, Pedro ; Alessandrini, Silvia ; Vanuzzo, Gianmarco ; Pannacci, Giacomo ; Baggioli, Alberto ; Marchione, Demian ; Caracciolo, Adriana ; Murray, Vanessa J. ; Casavecchia, Piergiorgio ; Balucani, Nadia ; Cavallotti, Carlo ; Puzzarini, Cristina ; Barone, Vincenzo</creatorcontrib><description>Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reaction barrier can control the rate of bimolecular reactions for weakly coupled potential energy surfaces, even in the absence of heavy atoms. For O( 3 P) plus pyridine, a reaction relevant to combustion, astrochemistry and biochemistry, crossed-beam experiments indicate that the dominant products are pyrrole and CO, obtained through a spin-forbidden ring-contraction mechanism. The experimental findings are interpreted—by high-level quantum-chemical calculations and statistical non-adiabatic computations of branching fractions—in terms of an efficient intersystem crossing occurring before the high entrance barrier for O-atom addition to the N-atom lone pair. At low to moderate temperatures, the computed reaction rates prove to be dominated by intersystem crossing. Intersystem crossing in reaction entrance channels usually arises from ‘heavy-atom’ effects. Now molecular-beam experiments show that even without heavy atoms, the O( 3 P) + pyridine reaction leads to spin-forbidden pyrrole + CO products. Theoretical calculations reveal efficient intersystem crossing before the entrance barrier for O-atom addition to the N-atom lone pair, which dominates reactivity at low to moderate temperatures.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-01047-3</identifier><identifier>PMID: 36175514</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/950 ; 639/638/563 ; Adiabatic ; Analytical Chemistry ; Astrochemistry ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Energy ; Experiments ; Fractions ; Inorganic Chemistry ; Mathematical analysis ; Organic Chemistry ; Physical Chemistry ; Potential energy ; Pyridines ; Quantum chemistry ; Quantum Theory ; Temperature</subject><ispartof>Nature chemistry, 2022-12, Vol.14 (12), p.1405-1412</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-254e5fae413758bcf11573cb44194ec7b67b16fee3db44a34f63e1375d8a6e053</citedby><cites>FETCH-LOGICAL-c375t-254e5fae413758bcf11573cb44194ec7b67b16fee3db44a34f63e1375d8a6e053</cites><orcidid>0000-0003-1934-7891 ; 0000-0002-9229-1401 ; 0000-0001-8159-6077 ; 0000-0002-2395-8532 ; 0000-0003-3152-3261 ; 0000-0001-5121-5683 ; 0000-0001-6420-4107 ; 0000-0002-4867-2872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-022-01047-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-022-01047-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36175514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Recio, Pedro</creatorcontrib><creatorcontrib>Alessandrini, Silvia</creatorcontrib><creatorcontrib>Vanuzzo, Gianmarco</creatorcontrib><creatorcontrib>Pannacci, Giacomo</creatorcontrib><creatorcontrib>Baggioli, Alberto</creatorcontrib><creatorcontrib>Marchione, Demian</creatorcontrib><creatorcontrib>Caracciolo, Adriana</creatorcontrib><creatorcontrib>Murray, Vanessa J.</creatorcontrib><creatorcontrib>Casavecchia, Piergiorgio</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Cavallotti, Carlo</creatorcontrib><creatorcontrib>Puzzarini, Cristina</creatorcontrib><creatorcontrib>Barone, Vincenzo</creatorcontrib><title>Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reaction barrier can control the rate of bimolecular reactions for weakly coupled potential energy surfaces, even in the absence of heavy atoms. For O( 3 P) plus pyridine, a reaction relevant to combustion, astrochemistry and biochemistry, crossed-beam experiments indicate that the dominant products are pyrrole and CO, obtained through a spin-forbidden ring-contraction mechanism. The experimental findings are interpreted—by high-level quantum-chemical calculations and statistical non-adiabatic computations of branching fractions—in terms of an efficient intersystem crossing occurring before the high entrance barrier for O-atom addition to the N-atom lone pair. At low to moderate temperatures, the computed reaction rates prove to be dominated by intersystem crossing. Intersystem crossing in reaction entrance channels usually arises from ‘heavy-atom’ effects. Now molecular-beam experiments show that even without heavy atoms, the O( 3 P) + pyridine reaction leads to spin-forbidden pyrrole + CO products. Theoretical calculations reveal efficient intersystem crossing before the entrance barrier for O-atom addition to the N-atom lone pair, which dominates reactivity at low to moderate temperatures.</description><subject>639/638/440/950</subject><subject>639/638/563</subject><subject>Adiabatic</subject><subject>Analytical Chemistry</subject><subject>Astrochemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Energy</subject><subject>Experiments</subject><subject>Fractions</subject><subject>Inorganic Chemistry</subject><subject>Mathematical analysis</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Potential energy</subject><subject>Pyridines</subject><subject>Quantum chemistry</subject><subject>Quantum Theory</subject><subject>Temperature</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUx4Mobk7_AQ8S8DIP1aRJmu0owx8DYYJ6Dmn6unW06UxaZP-96TonePCUvPc-75vwQeiSkltK2OTOcyqEjEgcR4QSLiN2hIZUChFxxqfHhzsjA3Tm_ZqQRDCanKIBS7oR5UP0NrcNOL_1DVTYuNr7wi5xYXGzAgy2cdoawGalrYUS1_mu70CbpqhtVy_G7PUGfxXNCm-2rsgKC-foJNelh4v9OUIfjw_vs-foZfE0n92_RIZJ0USx4CByDZyGcpKanFIhmUk5p1MORqaJTGmSA7As9DTjecKgY7OJToAINkLjPnfj6s8WfKOqwhsoS22hbr2KZUx4nBA2Dej1H3Rdt86G3wVKCEKmhJNAxT21E-EgVxtXVNptFSWqU6565SooVzvlioWlq310m1aQHVZ-HAeA9YAPI7sE9_v2P7Hf-yuKeA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Recio, Pedro</creator><creator>Alessandrini, Silvia</creator><creator>Vanuzzo, Gianmarco</creator><creator>Pannacci, Giacomo</creator><creator>Baggioli, Alberto</creator><creator>Marchione, Demian</creator><creator>Caracciolo, Adriana</creator><creator>Murray, Vanessa J.</creator><creator>Casavecchia, Piergiorgio</creator><creator>Balucani, Nadia</creator><creator>Cavallotti, Carlo</creator><creator>Puzzarini, Cristina</creator><creator>Barone, Vincenzo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1934-7891</orcidid><orcidid>https://orcid.org/0000-0002-9229-1401</orcidid><orcidid>https://orcid.org/0000-0001-8159-6077</orcidid><orcidid>https://orcid.org/0000-0002-2395-8532</orcidid><orcidid>https://orcid.org/0000-0003-3152-3261</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-6420-4107</orcidid><orcidid>https://orcid.org/0000-0002-4867-2872</orcidid></search><sort><creationdate>20221201</creationdate><title>Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine</title><author>Recio, Pedro ; Alessandrini, Silvia ; Vanuzzo, Gianmarco ; Pannacci, Giacomo ; Baggioli, Alberto ; Marchione, Demian ; Caracciolo, Adriana ; Murray, Vanessa J. ; Casavecchia, Piergiorgio ; Balucani, Nadia ; Cavallotti, Carlo ; Puzzarini, Cristina ; Barone, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-254e5fae413758bcf11573cb44194ec7b67b16fee3db44a34f63e1375d8a6e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/638/440/950</topic><topic>639/638/563</topic><topic>Adiabatic</topic><topic>Analytical Chemistry</topic><topic>Astrochemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Energy</topic><topic>Experiments</topic><topic>Fractions</topic><topic>Inorganic Chemistry</topic><topic>Mathematical analysis</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Potential energy</topic><topic>Pyridines</topic><topic>Quantum chemistry</topic><topic>Quantum Theory</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Recio, Pedro</creatorcontrib><creatorcontrib>Alessandrini, Silvia</creatorcontrib><creatorcontrib>Vanuzzo, Gianmarco</creatorcontrib><creatorcontrib>Pannacci, Giacomo</creatorcontrib><creatorcontrib>Baggioli, Alberto</creatorcontrib><creatorcontrib>Marchione, Demian</creatorcontrib><creatorcontrib>Caracciolo, Adriana</creatorcontrib><creatorcontrib>Murray, Vanessa J.</creatorcontrib><creatorcontrib>Casavecchia, Piergiorgio</creatorcontrib><creatorcontrib>Balucani, Nadia</creatorcontrib><creatorcontrib>Cavallotti, Carlo</creatorcontrib><creatorcontrib>Puzzarini, Cristina</creatorcontrib><creatorcontrib>Barone, Vincenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Recio, Pedro</au><au>Alessandrini, Silvia</au><au>Vanuzzo, Gianmarco</au><au>Pannacci, Giacomo</au><au>Baggioli, Alberto</au><au>Marchione, Demian</au><au>Caracciolo, Adriana</au><au>Murray, Vanessa J.</au><au>Casavecchia, Piergiorgio</au><au>Balucani, Nadia</au><au>Cavallotti, Carlo</au><au>Puzzarini, Cristina</au><au>Barone, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>1405</spage><epage>1412</epage><pages>1405-1412</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Two quantum effects can enable reactions to take place at energies below the barrier separating reactants from products: tunnelling and intersystem crossing between coupled potential energy surfaces. Here we show that intersystem crossing in the region between the pre-reactive complex and the reaction barrier can control the rate of bimolecular reactions for weakly coupled potential energy surfaces, even in the absence of heavy atoms. For O( 3 P) plus pyridine, a reaction relevant to combustion, astrochemistry and biochemistry, crossed-beam experiments indicate that the dominant products are pyrrole and CO, obtained through a spin-forbidden ring-contraction mechanism. The experimental findings are interpreted—by high-level quantum-chemical calculations and statistical non-adiabatic computations of branching fractions—in terms of an efficient intersystem crossing occurring before the high entrance barrier for O-atom addition to the N-atom lone pair. At low to moderate temperatures, the computed reaction rates prove to be dominated by intersystem crossing. Intersystem crossing in reaction entrance channels usually arises from ‘heavy-atom’ effects. Now molecular-beam experiments show that even without heavy atoms, the O( 3 P) + pyridine reaction leads to spin-forbidden pyrrole + CO products. Theoretical calculations reveal efficient intersystem crossing before the entrance barrier for O-atom addition to the N-atom lone pair, which dominates reactivity at low to moderate temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36175514</pmid><doi>10.1038/s41557-022-01047-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1934-7891</orcidid><orcidid>https://orcid.org/0000-0002-9229-1401</orcidid><orcidid>https://orcid.org/0000-0001-8159-6077</orcidid><orcidid>https://orcid.org/0000-0002-2395-8532</orcidid><orcidid>https://orcid.org/0000-0003-3152-3261</orcidid><orcidid>https://orcid.org/0000-0001-5121-5683</orcidid><orcidid>https://orcid.org/0000-0001-6420-4107</orcidid><orcidid>https://orcid.org/0000-0002-4867-2872</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2022-12, Vol.14 (12), p.1405-1412
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2720426039
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/638/440/950
639/638/563
Adiabatic
Analytical Chemistry
Astrochemistry
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Energy
Experiments
Fractions
Inorganic Chemistry
Mathematical analysis
Organic Chemistry
Physical Chemistry
Potential energy
Pyridines
Quantum chemistry
Quantum Theory
Temperature
title Intersystem crossing in the entrance channel of the reaction of O(3P) with pyridine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intersystem%20crossing%20in%20the%20entrance%20channel%20of%20the%20reaction%20of%20O(3P)%20with%20pyridine&rft.jtitle=Nature%20chemistry&rft.au=Recio,%20Pedro&rft.date=2022-12-01&rft.volume=14&rft.issue=12&rft.spage=1405&rft.epage=1412&rft.pages=1405-1412&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-01047-3&rft_dat=%3Cproquest_cross%3E2755009040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755009040&rft_id=info:pmid/36175514&rfr_iscdi=true