Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow) 2022-08, Vol.87 (8), p.823-831
Hauptverfasser: Kurgina, Tatyana A., Shram, Stanislav I., Kutuzov, Mikhail M., Abramova, Tatyana V., Shcherbakova, Tatyana A., Maltseva, Ekaterina A., Poroikov, Vladimir V., Lavrik, Olga I., Švedas, Vytas K., Nilov, Dmitry K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 8
container_start_page 823
container_title Biochemistry (Moscow)
container_volume 87
creator Kurgina, Tatyana A.
Shram, Stanislav I.
Kutuzov, Mikhail M.
Abramova, Tatyana V.
Shcherbakova, Tatyana A.
Maltseva, Ekaterina A.
Poroikov, Vladimir V.
Lavrik, Olga I.
Švedas, Vytas K.
Nilov, Dmitry K.
description Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC 50 values for 8h7mGua at different concentrations of the NAD + substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.
doi_str_mv 10.1134/S0006297922080132
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2719421978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714043924</galeid><sourcerecordid>A714043924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d65813837385d3294420768f4cab43eeebbe21dfabe0ca0c0fed941cedce8a893</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxS3USmwpH6A3S1zowdT_SOzjCmh3JSoQ0HPkOOPFKLHBTiTy7evtVkKFojmM5r3fG400CH1h9IQxIb_dUkorrmvNOVWUCb6HFqyiiggq6Qe02Npk6--jTzk_lJFTLRZoXod73_oxphlfOAd2zDg6XJOfMN7P_WYywQfAJnR4Xayimjb2fgSsyGruUnyeyWs4BryaBhPwdezn4-X5Nbnxbczw9Y8wQDIZMPuMPjrTZzj82w_Qr-8Xd2crcnn1Y322vCRWsmokXXWqmFCiFuq0E1xLyWldKSetaaUAgLYFzjpnWqDWUEsddFoyC50FZZQWB-h4t_cxxacJ8tgMPlvoexMgTrnhNdOSM12rgh69Qh_ilEK5rlCUC6lFJV6ojemh8cHFMRm7XdosayapFJrLQp38hyrVweBtDOB80f8JsF3ApphzAtc8Jj-YNDeMNtsfN29-XDJ8l8mFDRtILwe_H_oNcc2mIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702349363</pqid></control><display><type>article</type><title>Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kurgina, Tatyana A. ; Shram, Stanislav I. ; Kutuzov, Mikhail M. ; Abramova, Tatyana V. ; Shcherbakova, Tatyana A. ; Maltseva, Ekaterina A. ; Poroikov, Vladimir V. ; Lavrik, Olga I. ; Švedas, Vytas K. ; Nilov, Dmitry K.</creator><creatorcontrib>Kurgina, Tatyana A. ; Shram, Stanislav I. ; Kutuzov, Mikhail M. ; Abramova, Tatyana V. ; Shcherbakova, Tatyana A. ; Maltseva, Ekaterina A. ; Poroikov, Vladimir V. ; Lavrik, Olga I. ; Švedas, Vytas K. ; Nilov, Dmitry K.</creatorcontrib><description>Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC 50 values for 8h7mGua at different concentrations of the NAD + substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297922080132</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adenosine diphosphate ; Analysis ; Anisotropy ; Biochemistry ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Cancer ; Computer applications ; DNA polymerase ; DNA repair ; Enzymatic activity ; Enzymes ; Fluorescence ; Gene expression ; Hydrogen bonds ; Internet resources ; Life Sciences ; Metabolites ; Methylguanine ; Microbiology ; Monosaccharides ; Nucleic acids ; Poly(ADP-ribose) ; Poly(ADP-ribose) polymerase ; Ribose ; Selectivity ; Substrates ; Sugars ; Transfer RNA</subject><ispartof>Biochemistry (Moscow), 2022-08, Vol.87 (8), p.823-831</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d65813837385d3294420768f4cab43eeebbe21dfabe0ca0c0fed941cedce8a893</citedby><cites>FETCH-LOGICAL-c416t-d65813837385d3294420768f4cab43eeebbe21dfabe0ca0c0fed941cedce8a893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006297922080132$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006297922080132$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kurgina, Tatyana A.</creatorcontrib><creatorcontrib>Shram, Stanislav I.</creatorcontrib><creatorcontrib>Kutuzov, Mikhail M.</creatorcontrib><creatorcontrib>Abramova, Tatyana V.</creatorcontrib><creatorcontrib>Shcherbakova, Tatyana A.</creatorcontrib><creatorcontrib>Maltseva, Ekaterina A.</creatorcontrib><creatorcontrib>Poroikov, Vladimir V.</creatorcontrib><creatorcontrib>Lavrik, Olga I.</creatorcontrib><creatorcontrib>Švedas, Vytas K.</creatorcontrib><creatorcontrib>Nilov, Dmitry K.</creatorcontrib><title>Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><description>Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC 50 values for 8h7mGua at different concentrations of the NAD + substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.</description><subject>Adenosine diphosphate</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Computer applications</subject><subject>DNA polymerase</subject><subject>DNA repair</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Gene expression</subject><subject>Hydrogen bonds</subject><subject>Internet resources</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Methylguanine</subject><subject>Microbiology</subject><subject>Monosaccharides</subject><subject>Nucleic acids</subject><subject>Poly(ADP-ribose)</subject><subject>Poly(ADP-ribose) polymerase</subject><subject>Ribose</subject><subject>Selectivity</subject><subject>Substrates</subject><subject>Sugars</subject><subject>Transfer RNA</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU9P3DAQxS3USmwpH6A3S1zowdT_SOzjCmh3JSoQ0HPkOOPFKLHBTiTy7evtVkKFojmM5r3fG400CH1h9IQxIb_dUkorrmvNOVWUCb6HFqyiiggq6Qe02Npk6--jTzk_lJFTLRZoXod73_oxphlfOAd2zDg6XJOfMN7P_WYywQfAJnR4Xayimjb2fgSsyGruUnyeyWs4BryaBhPwdezn4-X5Nbnxbczw9Y8wQDIZMPuMPjrTZzj82w_Qr-8Xd2crcnn1Y322vCRWsmokXXWqmFCiFuq0E1xLyWldKSetaaUAgLYFzjpnWqDWUEsddFoyC50FZZQWB-h4t_cxxacJ8tgMPlvoexMgTrnhNdOSM12rgh69Qh_ilEK5rlCUC6lFJV6ojemh8cHFMRm7XdosayapFJrLQp38hyrVweBtDOB80f8JsF3ApphzAtc8Jj-YNDeMNtsfN29-XDJ8l8mFDRtILwe_H_oNcc2mIQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kurgina, Tatyana A.</creator><creator>Shram, Stanislav I.</creator><creator>Kutuzov, Mikhail M.</creator><creator>Abramova, Tatyana V.</creator><creator>Shcherbakova, Tatyana A.</creator><creator>Maltseva, Ekaterina A.</creator><creator>Poroikov, Vladimir V.</creator><creator>Lavrik, Olga I.</creator><creator>Švedas, Vytas K.</creator><creator>Nilov, Dmitry K.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20220801</creationdate><title>Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1</title><author>Kurgina, Tatyana A. ; Shram, Stanislav I. ; Kutuzov, Mikhail M. ; Abramova, Tatyana V. ; Shcherbakova, Tatyana A. ; Maltseva, Ekaterina A. ; Poroikov, Vladimir V. ; Lavrik, Olga I. ; Švedas, Vytas K. ; Nilov, Dmitry K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d65813837385d3294420768f4cab43eeebbe21dfabe0ca0c0fed941cedce8a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine diphosphate</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Computer applications</topic><topic>DNA polymerase</topic><topic>DNA repair</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Gene expression</topic><topic>Hydrogen bonds</topic><topic>Internet resources</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Methylguanine</topic><topic>Microbiology</topic><topic>Monosaccharides</topic><topic>Nucleic acids</topic><topic>Poly(ADP-ribose)</topic><topic>Poly(ADP-ribose) polymerase</topic><topic>Ribose</topic><topic>Selectivity</topic><topic>Substrates</topic><topic>Sugars</topic><topic>Transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurgina, Tatyana A.</creatorcontrib><creatorcontrib>Shram, Stanislav I.</creatorcontrib><creatorcontrib>Kutuzov, Mikhail M.</creatorcontrib><creatorcontrib>Abramova, Tatyana V.</creatorcontrib><creatorcontrib>Shcherbakova, Tatyana A.</creatorcontrib><creatorcontrib>Maltseva, Ekaterina A.</creatorcontrib><creatorcontrib>Poroikov, Vladimir V.</creatorcontrib><creatorcontrib>Lavrik, Olga I.</creatorcontrib><creatorcontrib>Švedas, Vytas K.</creatorcontrib><creatorcontrib>Nilov, Dmitry K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurgina, Tatyana A.</au><au>Shram, Stanislav I.</au><au>Kutuzov, Mikhail M.</au><au>Abramova, Tatyana V.</au><au>Shcherbakova, Tatyana A.</au><au>Maltseva, Ekaterina A.</au><au>Poroikov, Vladimir V.</au><au>Lavrik, Olga I.</au><au>Švedas, Vytas K.</au><au>Nilov, Dmitry K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>87</volume><issue>8</issue><spage>823</spage><epage>831</epage><pages>823-831</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC 50 values for 8h7mGua at different concentrations of the NAD + substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006297922080132</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2022-08, Vol.87 (8), p.823-831
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_2719421978
source SpringerLink Journals - AutoHoldings
subjects Adenosine diphosphate
Analysis
Anisotropy
Biochemistry
Biology
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Cancer
Computer applications
DNA polymerase
DNA repair
Enzymatic activity
Enzymes
Fluorescence
Gene expression
Hydrogen bonds
Internet resources
Life Sciences
Metabolites
Methylguanine
Microbiology
Monosaccharides
Nucleic acids
Poly(ADP-ribose)
Poly(ADP-ribose) polymerase
Ribose
Selectivity
Substrates
Sugars
Transfer RNA
title Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibitory%20Effects%20of%207-Methylguanine%20and%20Its%20Metabolite%208-Hydroxy-7-Methylguanine%20on%20Human%20Poly(ADP-Ribose)%20Polymerase%201&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Kurgina,%20Tatyana%20A.&rft.date=2022-08-01&rft.volume=87&rft.issue=8&rft.spage=823&rft.epage=831&rft.pages=823-831&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297922080132&rft_dat=%3Cgale_proqu%3EA714043924%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702349363&rft_id=info:pmid/&rft_galeid=A714043924&rfr_iscdi=true