The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors

The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-10, Vol.94 (40), p.13820-13828
Hauptverfasser: Fenoy, Gonzalo E., Piccinini, Esteban, Knoll, Wolfgang, Marmisollé, Waldemar A., Azzaroni, Omar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13828
container_issue 40
container_start_page 13820
container_title Analytical chemistry (Washington)
container_volume 94
creator Fenoy, Gonzalo E.
Piccinini, Esteban
Knoll, Wolfgang
Marmisollé, Waldemar A.
Azzaroni, Omar
description The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly­(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.
doi_str_mv 10.1021/acs.analchem.2c02373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2719421423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719421423</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</originalsourceid><addsrcrecordid>eNp9kbtOwzAUhi0EEuXyBgyWWFhSji9JnBFQC0hIMJQ5ct1jEpTYxXaHMvEOvCFPQqoWBgamM5zv-490fkLOGIwZcHapTRxrpzvTYD_mBrgoxR4ZsZxDVijF98kIAETGS4BDchTjKwBjwIoRWc8apBNr0STqLb3qW-e_Pj6fGh-XjU5I713CoE1qvYvUO5oG_rr1EV1s3Qt9wmB96LUzuPEn7n3d69Qaehv0skGHdNpit8h2J2ZBD15MPsQTcmB1F_F0N4_J83Qyu7nLHh5v72-uHjItcpGyKleFlFIIqZjSFozV84VZlEUlIAdlK8OLuVYcCmOQQWmUUkwis_PKLAZLHJOLbe4y-LcVxlT3bTTYddqhX8Wal6ySnEkuBvT8D_rqV2F47IbiuZBcsmqg5JYywccY0NbL0PY6rGsG9aaPeuij_umj3vUxaLDVNtvf3H-Vb0npk0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725342419</pqid></control><display><type>article</type><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><source>ACS Publications</source><creator>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creator><creatorcontrib>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creatorcontrib><description>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly­(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02373</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Adenosine triphosphate ; Analytical chemistry ; Anions ; ATP ; Binding ; Biosensors ; Charge density ; Chemistry ; Colloids ; Enzymes ; Field effect transistors ; Graphene ; Immobilization ; Multilayers ; Orthophosphate ; Phosphates ; Polyamines ; Polyelectrolytes ; Semiconductor devices ; Surface charge ; Transistors ; Tripolyphosphate ; Urea ; Ureas ; Urease</subject><ispartof>Analytical chemistry (Washington), 2022-10, Vol.94 (40), p.13820-13828</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 11, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</citedby><cites>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</cites><orcidid>0000-0003-0031-5371 ; 0000-0002-5098-0612 ; 0000-0003-4336-4843 ; 0000-0003-1543-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02373$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02373$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly­(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</description><subject>Adenosine triphosphate</subject><subject>Analytical chemistry</subject><subject>Anions</subject><subject>ATP</subject><subject>Binding</subject><subject>Biosensors</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Colloids</subject><subject>Enzymes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Immobilization</subject><subject>Multilayers</subject><subject>Orthophosphate</subject><subject>Phosphates</subject><subject>Polyamines</subject><subject>Polyelectrolytes</subject><subject>Semiconductor devices</subject><subject>Surface charge</subject><subject>Transistors</subject><subject>Tripolyphosphate</subject><subject>Urea</subject><subject>Ureas</subject><subject>Urease</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kbtOwzAUhi0EEuXyBgyWWFhSji9JnBFQC0hIMJQ5ct1jEpTYxXaHMvEOvCFPQqoWBgamM5zv-490fkLOGIwZcHapTRxrpzvTYD_mBrgoxR4ZsZxDVijF98kIAETGS4BDchTjKwBjwIoRWc8apBNr0STqLb3qW-e_Pj6fGh-XjU5I713CoE1qvYvUO5oG_rr1EV1s3Qt9wmB96LUzuPEn7n3d69Qaehv0skGHdNpit8h2J2ZBD15MPsQTcmB1F_F0N4_J83Qyu7nLHh5v72-uHjItcpGyKleFlFIIqZjSFozV84VZlEUlIAdlK8OLuVYcCmOQQWmUUkwis_PKLAZLHJOLbe4y-LcVxlT3bTTYddqhX8Wal6ySnEkuBvT8D_rqV2F47IbiuZBcsmqg5JYywccY0NbL0PY6rGsG9aaPeuij_umj3vUxaLDVNtvf3H-Vb0npk0E</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Fenoy, Gonzalo E.</creator><creator>Piccinini, Esteban</creator><creator>Knoll, Wolfgang</creator><creator>Marmisollé, Waldemar A.</creator><creator>Azzaroni, Omar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid></search><sort><creationdate>20221011</creationdate><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><author>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphate</topic><topic>Analytical chemistry</topic><topic>Anions</topic><topic>ATP</topic><topic>Binding</topic><topic>Biosensors</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Colloids</topic><topic>Enzymes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Immobilization</topic><topic>Multilayers</topic><topic>Orthophosphate</topic><topic>Phosphates</topic><topic>Polyamines</topic><topic>Polyelectrolytes</topic><topic>Semiconductor devices</topic><topic>Surface charge</topic><topic>Transistors</topic><topic>Tripolyphosphate</topic><topic>Urea</topic><topic>Ureas</topic><topic>Urease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenoy, Gonzalo E.</au><au>Piccinini, Esteban</au><au>Knoll, Wolfgang</au><au>Marmisollé, Waldemar A.</au><au>Azzaroni, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>94</volume><issue>40</issue><spage>13820</spage><epage>13828</epage><pages>13820-13828</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly­(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-10, Vol.94 (40), p.13820-13828
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2719421423
source ACS Publications
subjects Adenosine triphosphate
Analytical chemistry
Anions
ATP
Binding
Biosensors
Charge density
Chemistry
Colloids
Enzymes
Field effect transistors
Graphene
Immobilization
Multilayers
Orthophosphate
Phosphates
Polyamines
Polyelectrolytes
Semiconductor devices
Surface charge
Transistors
Tripolyphosphate
Urea
Ureas
Urease
title The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Amino%E2%80%93Phosphate%20Interactions%20on%20the%20Biosensing%20Performance%20of%20Enzymatic%20Graphene%20Field-Effect%20Transistors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fenoy,%20Gonzalo%20E.&rft.date=2022-10-11&rft.volume=94&rft.issue=40&rft.spage=13820&rft.epage=13828&rft.pages=13820-13828&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02373&rft_dat=%3Cproquest_cross%3E2719421423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725342419&rft_id=info:pmid/&rfr_iscdi=true