The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors
The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evid...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-10, Vol.94 (40), p.13820-13828 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13828 |
---|---|
container_issue | 40 |
container_start_page | 13820 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Fenoy, Gonzalo E. Piccinini, Esteban Knoll, Wolfgang Marmisollé, Waldemar A. Azzaroni, Omar |
description | The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing. |
doi_str_mv | 10.1021/acs.analchem.2c02373 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2719421423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719421423</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</originalsourceid><addsrcrecordid>eNp9kbtOwzAUhi0EEuXyBgyWWFhSji9JnBFQC0hIMJQ5ct1jEpTYxXaHMvEOvCFPQqoWBgamM5zv-490fkLOGIwZcHapTRxrpzvTYD_mBrgoxR4ZsZxDVijF98kIAETGS4BDchTjKwBjwIoRWc8apBNr0STqLb3qW-e_Pj6fGh-XjU5I713CoE1qvYvUO5oG_rr1EV1s3Qt9wmB96LUzuPEn7n3d69Qaehv0skGHdNpit8h2J2ZBD15MPsQTcmB1F_F0N4_J83Qyu7nLHh5v72-uHjItcpGyKleFlFIIqZjSFozV84VZlEUlIAdlK8OLuVYcCmOQQWmUUkwis_PKLAZLHJOLbe4y-LcVxlT3bTTYddqhX8Wal6ySnEkuBvT8D_rqV2F47IbiuZBcsmqg5JYywccY0NbL0PY6rGsG9aaPeuij_umj3vUxaLDVNtvf3H-Vb0npk0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725342419</pqid></control><display><type>article</type><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><source>ACS Publications</source><creator>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creator><creatorcontrib>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</creatorcontrib><description>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02373</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Adenosine triphosphate ; Analytical chemistry ; Anions ; ATP ; Binding ; Biosensors ; Charge density ; Chemistry ; Colloids ; Enzymes ; Field effect transistors ; Graphene ; Immobilization ; Multilayers ; Orthophosphate ; Phosphates ; Polyamines ; Polyelectrolytes ; Semiconductor devices ; Surface charge ; Transistors ; Tripolyphosphate ; Urea ; Ureas ; Urease</subject><ispartof>Analytical chemistry (Washington), 2022-10, Vol.94 (40), p.13820-13828</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 11, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</citedby><cites>FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</cites><orcidid>0000-0003-0031-5371 ; 0000-0002-5098-0612 ; 0000-0003-4336-4843 ; 0000-0003-1543-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02373$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02373$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</description><subject>Adenosine triphosphate</subject><subject>Analytical chemistry</subject><subject>Anions</subject><subject>ATP</subject><subject>Binding</subject><subject>Biosensors</subject><subject>Charge density</subject><subject>Chemistry</subject><subject>Colloids</subject><subject>Enzymes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Immobilization</subject><subject>Multilayers</subject><subject>Orthophosphate</subject><subject>Phosphates</subject><subject>Polyamines</subject><subject>Polyelectrolytes</subject><subject>Semiconductor devices</subject><subject>Surface charge</subject><subject>Transistors</subject><subject>Tripolyphosphate</subject><subject>Urea</subject><subject>Ureas</subject><subject>Urease</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kbtOwzAUhi0EEuXyBgyWWFhSji9JnBFQC0hIMJQ5ct1jEpTYxXaHMvEOvCFPQqoWBgamM5zv-490fkLOGIwZcHapTRxrpzvTYD_mBrgoxR4ZsZxDVijF98kIAETGS4BDchTjKwBjwIoRWc8apBNr0STqLb3qW-e_Pj6fGh-XjU5I713CoE1qvYvUO5oG_rr1EV1s3Qt9wmB96LUzuPEn7n3d69Qaehv0skGHdNpit8h2J2ZBD15MPsQTcmB1F_F0N4_J83Qyu7nLHh5v72-uHjItcpGyKleFlFIIqZjSFozV84VZlEUlIAdlK8OLuVYcCmOQQWmUUkwis_PKLAZLHJOLbe4y-LcVxlT3bTTYddqhX8Wal6ySnEkuBvT8D_rqV2F47IbiuZBcsmqg5JYywccY0NbL0PY6rGsG9aaPeuij_umj3vUxaLDVNtvf3H-Vb0npk0E</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Fenoy, Gonzalo E.</creator><creator>Piccinini, Esteban</creator><creator>Knoll, Wolfgang</creator><creator>Marmisollé, Waldemar A.</creator><creator>Azzaroni, Omar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid></search><sort><creationdate>20221011</creationdate><title>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</title><author>Fenoy, Gonzalo E. ; Piccinini, Esteban ; Knoll, Wolfgang ; Marmisollé, Waldemar A. ; Azzaroni, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-9586444334818af0cfabdcd76930508f9c26ba8206cce107c88814e1fb9cd3343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphate</topic><topic>Analytical chemistry</topic><topic>Anions</topic><topic>ATP</topic><topic>Binding</topic><topic>Biosensors</topic><topic>Charge density</topic><topic>Chemistry</topic><topic>Colloids</topic><topic>Enzymes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Immobilization</topic><topic>Multilayers</topic><topic>Orthophosphate</topic><topic>Phosphates</topic><topic>Polyamines</topic><topic>Polyelectrolytes</topic><topic>Semiconductor devices</topic><topic>Surface charge</topic><topic>Transistors</topic><topic>Tripolyphosphate</topic><topic>Urea</topic><topic>Ureas</topic><topic>Urease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenoy, Gonzalo E.</creatorcontrib><creatorcontrib>Piccinini, Esteban</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><creatorcontrib>Marmisollé, Waldemar A.</creatorcontrib><creatorcontrib>Azzaroni, Omar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenoy, Gonzalo E.</au><au>Piccinini, Esteban</au><au>Knoll, Wolfgang</au><au>Marmisollé, Waldemar A.</au><au>Azzaroni, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>94</volume><issue>40</issue><spage>13820</spage><epage>13828</epage><pages>13820-13828</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate–amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate–amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte–urease assemblies, with direct implications on urea sensing.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.2c02373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0031-5371</orcidid><orcidid>https://orcid.org/0000-0002-5098-0612</orcidid><orcidid>https://orcid.org/0000-0003-4336-4843</orcidid><orcidid>https://orcid.org/0000-0003-1543-4090</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-10, Vol.94 (40), p.13820-13828 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2719421423 |
source | ACS Publications |
subjects | Adenosine triphosphate Analytical chemistry Anions ATP Binding Biosensors Charge density Chemistry Colloids Enzymes Field effect transistors Graphene Immobilization Multilayers Orthophosphate Phosphates Polyamines Polyelectrolytes Semiconductor devices Surface charge Transistors Tripolyphosphate Urea Ureas Urease |
title | The Effect of Amino–Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Amino%E2%80%93Phosphate%20Interactions%20on%20the%20Biosensing%20Performance%20of%20Enzymatic%20Graphene%20Field-Effect%20Transistors&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fenoy,%20Gonzalo%20E.&rft.date=2022-10-11&rft.volume=94&rft.issue=40&rft.spage=13820&rft.epage=13828&rft.pages=13820-13828&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02373&rft_dat=%3Cproquest_cross%3E2719421423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725342419&rft_id=info:pmid/&rfr_iscdi=true |