Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability

Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (40), p.45308-45319
Hauptverfasser: Naik, Kaustubh G., Chatterjee, Debanjali, Mukherjee, Partha P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45319
container_issue 40
container_start_page 45308
container_title ACS applied materials & interfaces
container_volume 14
creator Naik, Kaustubh G.
Chatterjee, Debanjali
Mukherjee, Partha P.
description Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.
doi_str_mv 10.1021/acsami.2c11339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2719421242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719421242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</originalsourceid><addsrcrecordid>eNp1UMFOAjEUbIwmInr1vEdjsti-Frp7JIhCQmIievDUdNu3WrJscVsO3PwH_9AvsQTizdN7b97MJDOEXDM6YBTYnTZBr90ADGOclyekx0oh8gKGcPq3C3FOLkJYUTriQIc98rb0jbPZtEETO9_sIv58fU90_PAWs3kbsau1wezemagjhuwZtYnOt9kM08-_Y4su7jLd2mzc7jXLqCvXJOySnNW6CXh1nH3y-jB9mczyxdPjfDJe5JpTGXMUaCRoYS2AZnxU0KqskRtAKJmEQgptC1EApqvklaSlrURh0XI5qiWreZ_cHHw3nf_cYohq7YLBptEt-m1QIFN2YCAgUQcHqul8CB3WatO5te52ilG171AdOlTHDpPg9iBIuFr5bdemJP-RfwFzNXVe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719421242</pqid></control><display><type>article</type><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><source>ACS Publications</source><creator>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</creator><creatorcontrib>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</creatorcontrib><description>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c11339</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-10, Vol.14 (40), p.45308-45319</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</citedby><cites>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</cites><orcidid>0000-0001-7900-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c11339$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c11339$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Naik, Kaustubh G.</creatorcontrib><creatorcontrib>Chatterjee, Debanjali</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOAjEUbIwmInr1vEdjsti-Frp7JIhCQmIievDUdNu3WrJscVsO3PwH_9AvsQTizdN7b97MJDOEXDM6YBTYnTZBr90ADGOclyekx0oh8gKGcPq3C3FOLkJYUTriQIc98rb0jbPZtEETO9_sIv58fU90_PAWs3kbsau1wezemagjhuwZtYnOt9kM08-_Y4su7jLd2mzc7jXLqCvXJOySnNW6CXh1nH3y-jB9mczyxdPjfDJe5JpTGXMUaCRoYS2AZnxU0KqskRtAKJmEQgptC1EApqvklaSlrURh0XI5qiWreZ_cHHw3nf_cYohq7YLBptEt-m1QIFN2YCAgUQcHqul8CB3WatO5te52ilG171AdOlTHDpPg9iBIuFr5bdemJP-RfwFzNXVe</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Naik, Kaustubh G.</creator><creator>Chatterjee, Debanjali</creator><creator>Mukherjee, Partha P.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></search><sort><creationdate>20221012</creationdate><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><author>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Kaustubh G.</creatorcontrib><creatorcontrib>Chatterjee, Debanjali</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Kaustubh G.</au><au>Chatterjee, Debanjali</au><au>Mukherjee, Partha P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>14</volume><issue>40</issue><spage>45308</spage><epage>45319</epage><pages>45308-45319</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c11339</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-10, Vol.14 (40), p.45308-45319
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2719421242
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20Electrolyte%E2%80%93Cathode%20Interface%20Dictates%20Reaction%20Heterogeneity%20and%20Anode%20Stability&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Naik,%20Kaustubh%20G.&rft.date=2022-10-12&rft.volume=14&rft.issue=40&rft.spage=45308&rft.epage=45319&rft.pages=45308-45319&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c11339&rft_dat=%3Cproquest_cross%3E2719421242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719421242&rft_id=info:pmid/&rfr_iscdi=true