Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability
Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major con...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-10, Vol.14 (40), p.45308-45319 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45319 |
---|---|
container_issue | 40 |
container_start_page | 45308 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Naik, Kaustubh G. Chatterjee, Debanjali Mukherjee, Partha P. |
description | Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering. |
doi_str_mv | 10.1021/acsami.2c11339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2719421242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719421242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</originalsourceid><addsrcrecordid>eNp1UMFOAjEUbIwmInr1vEdjsti-Frp7JIhCQmIievDUdNu3WrJscVsO3PwH_9AvsQTizdN7b97MJDOEXDM6YBTYnTZBr90ADGOclyekx0oh8gKGcPq3C3FOLkJYUTriQIc98rb0jbPZtEETO9_sIv58fU90_PAWs3kbsau1wezemagjhuwZtYnOt9kM08-_Y4su7jLd2mzc7jXLqCvXJOySnNW6CXh1nH3y-jB9mczyxdPjfDJe5JpTGXMUaCRoYS2AZnxU0KqskRtAKJmEQgptC1EApqvklaSlrURh0XI5qiWreZ_cHHw3nf_cYohq7YLBptEt-m1QIFN2YCAgUQcHqul8CB3WatO5te52ilG171AdOlTHDpPg9iBIuFr5bdemJP-RfwFzNXVe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719421242</pqid></control><display><type>article</type><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><source>ACS Publications</source><creator>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</creator><creatorcontrib>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</creatorcontrib><description>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c11339</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-10, Vol.14 (40), p.45308-45319</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</citedby><cites>FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</cites><orcidid>0000-0001-7900-7261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c11339$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c11339$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Naik, Kaustubh G.</creatorcontrib><creatorcontrib>Chatterjee, Debanjali</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOAjEUbIwmInr1vEdjsti-Frp7JIhCQmIievDUdNu3WrJscVsO3PwH_9AvsQTizdN7b97MJDOEXDM6YBTYnTZBr90ADGOclyekx0oh8gKGcPq3C3FOLkJYUTriQIc98rb0jbPZtEETO9_sIv58fU90_PAWs3kbsau1wezemagjhuwZtYnOt9kM08-_Y4su7jLd2mzc7jXLqCvXJOySnNW6CXh1nH3y-jB9mczyxdPjfDJe5JpTGXMUaCRoYS2AZnxU0KqskRtAKJmEQgptC1EApqvklaSlrURh0XI5qiWreZ_cHHw3nf_cYohq7YLBptEt-m1QIFN2YCAgUQcHqul8CB3WatO5te52ilG171AdOlTHDpPg9iBIuFr5bdemJP-RfwFzNXVe</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Naik, Kaustubh G.</creator><creator>Chatterjee, Debanjali</creator><creator>Mukherjee, Partha P.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></search><sort><creationdate>20221012</creationdate><title>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</title><author>Naik, Kaustubh G. ; Chatterjee, Debanjali ; Mukherjee, Partha P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-e4ec72a4dd22a13680b9fe3c2e29172874ad8482e91793b709db48ded376f71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naik, Kaustubh G.</creatorcontrib><creatorcontrib>Chatterjee, Debanjali</creatorcontrib><creatorcontrib>Mukherjee, Partha P.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naik, Kaustubh G.</au><au>Chatterjee, Debanjali</au><au>Mukherjee, Partha P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>14</volume><issue>40</issue><spage>45308</spage><epage>45319</epage><pages>45308-45319</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solid-state batteries (SSBs) employing a lithium metal anode are a promising candidate for next-generation energy storage systems, delivering higher power and energy densities. Interfacial instabilities due to non-uniform electrodeposition at the anode–solid electrolyte (SE) interface pose major constraints on the safety and endurance of SSBs. In this regard, non-uniform kinetic interactions at the anode–SE interface which are derived from cathode microstructural heterogeneity can have significant impact on anode stability. In this work, we present a comprehensive insight into microstructural heterogeneity-driven cathode–anode cross-talk and delineate the role of cathode architecture and SE separator design in dictating reaction heterogeneity at the anode–SE interface. We show that intrinsic and extrinsic parameters, such as cathode loading, separator thickness, particle morphologies of active material and SE, and temperature can have significant impact on reaction heterogeneity at the anode–SE interface and thus govern anode stability. Tradeoff between energy density and anode stability while achieving higher cathode loading and thinner SE separators is highlighted, and potential strategies to mitigate this problem are discussed. This work provides fundamental insights into cathode–anode cross-talk involving interfacial heterogeneities and enhancement in energy densities of SSBs via electrode engineering.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c11339</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7900-7261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-10, Vol.14 (40), p.45308-45319 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2719421242 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%20Electrolyte%E2%80%93Cathode%20Interface%20Dictates%20Reaction%20Heterogeneity%20and%20Anode%20Stability&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Naik,%20Kaustubh%20G.&rft.date=2022-10-12&rft.volume=14&rft.issue=40&rft.spage=45308&rft.epage=45319&rft.pages=45308-45319&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c11339&rft_dat=%3Cproquest_cross%3E2719421242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719421242&rft_id=info:pmid/&rfr_iscdi=true |