Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network

Background An inherently poor signal‐to‐noise ratio (SNR) causes inaccuracy and less precision in cerebral blood flow (CBF) and arterial transit time (ATT) when using arterial spin labeling (ASL). Deep neural network (DNN)‐based parameter estimation can solve these problems. Purpose To reduce the ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2023-05, Vol.57 (5), p.1477-1489
Hauptverfasser: Ishida, Shota, Isozaki, Makoto, Fujiwara, Yasuhiro, Takei, Naoyuki, Kanamoto, Masayuki, Kimura, Hirohiko, Tsujikawa, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1489
container_issue 5
container_start_page 1477
container_title Journal of magnetic resonance imaging
container_volume 57
creator Ishida, Shota
Isozaki, Makoto
Fujiwara, Yasuhiro
Takei, Naoyuki
Kanamoto, Masayuki
Kimura, Hirohiko
Tsujikawa, Tetsuya
description Background An inherently poor signal‐to‐noise ratio (SNR) causes inaccuracy and less precision in cerebral blood flow (CBF) and arterial transit time (ATT) when using arterial spin labeling (ASL). Deep neural network (DNN)‐based parameter estimation can solve these problems. Purpose To reduce the effects of Rician noise on ASL parameter estimation and compute unbiased CBF and ATT using simulation‐based supervised DNNs. Study Type Retrospective. Population One million simulation test data points, 17 healthy volunteers (five women and 12 men, 33.2 ± 14.6 years of age), and one patient with moyamoya disease. Field Strength/Sequence 3.0 T/Hadamard‐encoded pseudo‐continuous ASL with a three‐dimensional fast spin‐echo stack of spirals. Assessment Performances of DNN and conventional methods were compared. For test data, the normalized mean absolute error (NMAE) and normalized root mean squared error (NRMSE) between the ground truth and predicted values were evaluated. For in vivo data, baseline CBF and ATT and their relative changes with respect to SNR using artificial noise‐added images were assessed. Statistical Tests One‐way analysis of variance with post‐hoc Tukey's multiple comparison test, paired t‐test, and the Bland–Altman graphical analysis. Statistical significance was defined as P 
doi_str_mv 10.1002/jmri.28433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718961508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718961508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-bac2c4dd17b31f47d1c9def33d57cdcf2e65527a3c1d40f4a522b87e9e813c183</originalsourceid><addsrcrecordid>eNp9kc1u1DAUha0KREth0weoLLFBSCn-ifOzbKcdKJoWiZmuI8e-qTx14mAnjGbHI_AOvBlPgtMprdQFKx9dfff46hyEjig5oYSwj-vWmxNWpJzvoQMqGEuYKLIXURPBE1qQfB-9DmFNCCnLVLxC-zyjWZmJ9AD9vgiDaeVgXIddg2fgofbS4jPrnMZz6zZYdhqf-gG8ifOVl10wA16ZFvDcuxZfjXYwf37-Ogcrt0_gsjcdXsgarOlu8dW3S3wTJiXx0rSjvf8xbp3JABovxx78DzPJc4AeX8M4HXENw8b5uzfoZSNtgLcP7yG6mV-sZp-TxddPl7PTRaJSxnlSS8VUqjXNa06bNNdUlRoazrXIlVYNg0wIlkuuqE5Jk8qYVF3kUEJB46zgh-j9zrf37vsIYahaExRYKztwY6hYTosyo4JM6Ltn6NqNvovXRaoUZZYLkUXqw45S3oXgoal6H8P224qSaqqumqqr7quL8PGD5Vi3oB_Rf11FgO6AjbGw_Y9V9SXGvTP9CwYkpzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795967556</pqid></control><display><type>article</type><title>Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ishida, Shota ; Isozaki, Makoto ; Fujiwara, Yasuhiro ; Takei, Naoyuki ; Kanamoto, Masayuki ; Kimura, Hirohiko ; Tsujikawa, Tetsuya</creator><creatorcontrib>Ishida, Shota ; Isozaki, Makoto ; Fujiwara, Yasuhiro ; Takei, Naoyuki ; Kanamoto, Masayuki ; Kimura, Hirohiko ; Tsujikawa, Tetsuya</creatorcontrib><description>Background An inherently poor signal‐to‐noise ratio (SNR) causes inaccuracy and less precision in cerebral blood flow (CBF) and arterial transit time (ATT) when using arterial spin labeling (ASL). Deep neural network (DNN)‐based parameter estimation can solve these problems. Purpose To reduce the effects of Rician noise on ASL parameter estimation and compute unbiased CBF and ATT using simulation‐based supervised DNNs. Study Type Retrospective. Population One million simulation test data points, 17 healthy volunteers (five women and 12 men, 33.2 ± 14.6 years of age), and one patient with moyamoya disease. Field Strength/Sequence 3.0 T/Hadamard‐encoded pseudo‐continuous ASL with a three‐dimensional fast spin‐echo stack of spirals. Assessment Performances of DNN and conventional methods were compared. For test data, the normalized mean absolute error (NMAE) and normalized root mean squared error (NRMSE) between the ground truth and predicted values were evaluated. For in vivo data, baseline CBF and ATT and their relative changes with respect to SNR using artificial noise‐added images were assessed. Statistical Tests One‐way analysis of variance with post‐hoc Tukey's multiple comparison test, paired t‐test, and the Bland–Altman graphical analysis. Statistical significance was defined as P &lt; 0.05. Results For both CBF and ATT, NMAE and NRMSE were lower with DNN than with the conventional method. The baseline values were significantly smaller with DNN than with the conventional method (CBF in gray matter, 66 ± 10 vs. 71 ± 12 mL/100 g/min; white matter, 45 ± 6 vs. 46 ± 7 mL/100 g/min; ATT in gray matter, 1424 ± 201 vs. 1471 ± 154 msec). CBF and ATT increased with decreasing SNR; however, their change rates were smaller with DNN than were those with the conventional method. Higher CBF in the prolonged ATT region and clearer contrast in ATT were identified by DNN in a clinical case. Data Conclusion DNN outperformed the conventional method in terms of accuracy, precision, and noise immunity. Evidence Level: 3 Technical Efficacy: Stage 1</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.28433</identifier><identifier>PMID: 36169654</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Arterial spin labeling (ASL) ; arterial transit time (ATT) ; Artificial neural networks ; Background noise ; Blood flow ; Cerebral blood flow ; cerebral blood flow (CBF) ; Cerebrovascular Circulation - physiology ; Data points ; deep neural network (DNN) ; Female ; Field strength ; Humans ; In vivo methods and tests ; Labeling ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Moyamoya disease ; Neural networks ; Neural Networks, Computer ; Noise ; Parameter estimation ; Population studies ; Reproducibility of Results ; Retrospective Studies ; Simulation ; Spin labeling ; Spin Labels ; Statistical analysis ; Statistical tests ; Substantia alba ; Substantia grisea ; Transit time ; Variance analysis</subject><ispartof>Journal of magnetic resonance imaging, 2023-05, Vol.57 (5), p.1477-1489</ispartof><rights>2022 International Society for Magnetic Resonance in Medicine.</rights><rights>2023 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-bac2c4dd17b31f47d1c9def33d57cdcf2e65527a3c1d40f4a522b87e9e813c183</citedby><cites>FETCH-LOGICAL-c4233-bac2c4dd17b31f47d1c9def33d57cdcf2e65527a3c1d40f4a522b87e9e813c183</cites><orcidid>0000-0002-8980-1044 ; 0000-0002-0728-8057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.28433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.28433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36169654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Shota</creatorcontrib><creatorcontrib>Isozaki, Makoto</creatorcontrib><creatorcontrib>Fujiwara, Yasuhiro</creatorcontrib><creatorcontrib>Takei, Naoyuki</creatorcontrib><creatorcontrib>Kanamoto, Masayuki</creatorcontrib><creatorcontrib>Kimura, Hirohiko</creatorcontrib><creatorcontrib>Tsujikawa, Tetsuya</creatorcontrib><title>Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background An inherently poor signal‐to‐noise ratio (SNR) causes inaccuracy and less precision in cerebral blood flow (CBF) and arterial transit time (ATT) when using arterial spin labeling (ASL). Deep neural network (DNN)‐based parameter estimation can solve these problems. Purpose To reduce the effects of Rician noise on ASL parameter estimation and compute unbiased CBF and ATT using simulation‐based supervised DNNs. Study Type Retrospective. Population One million simulation test data points, 17 healthy volunteers (five women and 12 men, 33.2 ± 14.6 years of age), and one patient with moyamoya disease. Field Strength/Sequence 3.0 T/Hadamard‐encoded pseudo‐continuous ASL with a three‐dimensional fast spin‐echo stack of spirals. Assessment Performances of DNN and conventional methods were compared. For test data, the normalized mean absolute error (NMAE) and normalized root mean squared error (NRMSE) between the ground truth and predicted values were evaluated. For in vivo data, baseline CBF and ATT and their relative changes with respect to SNR using artificial noise‐added images were assessed. Statistical Tests One‐way analysis of variance with post‐hoc Tukey's multiple comparison test, paired t‐test, and the Bland–Altman graphical analysis. Statistical significance was defined as P &lt; 0.05. Results For both CBF and ATT, NMAE and NRMSE were lower with DNN than with the conventional method. The baseline values were significantly smaller with DNN than with the conventional method (CBF in gray matter, 66 ± 10 vs. 71 ± 12 mL/100 g/min; white matter, 45 ± 6 vs. 46 ± 7 mL/100 g/min; ATT in gray matter, 1424 ± 201 vs. 1471 ± 154 msec). CBF and ATT increased with decreasing SNR; however, their change rates were smaller with DNN than were those with the conventional method. Higher CBF in the prolonged ATT region and clearer contrast in ATT were identified by DNN in a clinical case. Data Conclusion DNN outperformed the conventional method in terms of accuracy, precision, and noise immunity. Evidence Level: 3 Technical Efficacy: Stage 1</description><subject>Arterial spin labeling (ASL)</subject><subject>arterial transit time (ATT)</subject><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Blood flow</subject><subject>Cerebral blood flow</subject><subject>cerebral blood flow (CBF)</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Data points</subject><subject>deep neural network (DNN)</subject><subject>Female</subject><subject>Field strength</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Labeling</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Moyamoya disease</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Population studies</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Simulation</subject><subject>Spin labeling</subject><subject>Spin Labels</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Transit time</subject><subject>Variance analysis</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUha0KREth0weoLLFBSCn-ifOzbKcdKJoWiZmuI8e-qTx14mAnjGbHI_AOvBlPgtMprdQFKx9dfff46hyEjig5oYSwj-vWmxNWpJzvoQMqGEuYKLIXURPBE1qQfB-9DmFNCCnLVLxC-zyjWZmJ9AD9vgiDaeVgXIddg2fgofbS4jPrnMZz6zZYdhqf-gG8ifOVl10wA16ZFvDcuxZfjXYwf37-Ogcrt0_gsjcdXsgarOlu8dW3S3wTJiXx0rSjvf8xbp3JABovxx78DzPJc4AeX8M4HXENw8b5uzfoZSNtgLcP7yG6mV-sZp-TxddPl7PTRaJSxnlSS8VUqjXNa06bNNdUlRoazrXIlVYNg0wIlkuuqE5Jk8qYVF3kUEJB46zgh-j9zrf37vsIYahaExRYKztwY6hYTosyo4JM6Ltn6NqNvovXRaoUZZYLkUXqw45S3oXgoal6H8P224qSaqqumqqr7quL8PGD5Vi3oB_Rf11FgO6AjbGw_Y9V9SXGvTP9CwYkpzA</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Ishida, Shota</creator><creator>Isozaki, Makoto</creator><creator>Fujiwara, Yasuhiro</creator><creator>Takei, Naoyuki</creator><creator>Kanamoto, Masayuki</creator><creator>Kimura, Hirohiko</creator><creator>Tsujikawa, Tetsuya</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8980-1044</orcidid><orcidid>https://orcid.org/0000-0002-0728-8057</orcidid></search><sort><creationdate>202305</creationdate><title>Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network</title><author>Ishida, Shota ; Isozaki, Makoto ; Fujiwara, Yasuhiro ; Takei, Naoyuki ; Kanamoto, Masayuki ; Kimura, Hirohiko ; Tsujikawa, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-bac2c4dd17b31f47d1c9def33d57cdcf2e65527a3c1d40f4a522b87e9e813c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arterial spin labeling (ASL)</topic><topic>arterial transit time (ATT)</topic><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Blood flow</topic><topic>Cerebral blood flow</topic><topic>cerebral blood flow (CBF)</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Data points</topic><topic>deep neural network (DNN)</topic><topic>Female</topic><topic>Field strength</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Labeling</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Moyamoya disease</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Population studies</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Simulation</topic><topic>Spin labeling</topic><topic>Spin Labels</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Transit time</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Shota</creatorcontrib><creatorcontrib>Isozaki, Makoto</creatorcontrib><creatorcontrib>Fujiwara, Yasuhiro</creatorcontrib><creatorcontrib>Takei, Naoyuki</creatorcontrib><creatorcontrib>Kanamoto, Masayuki</creatorcontrib><creatorcontrib>Kimura, Hirohiko</creatorcontrib><creatorcontrib>Tsujikawa, Tetsuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Shota</au><au>Isozaki, Makoto</au><au>Fujiwara, Yasuhiro</au><au>Takei, Naoyuki</au><au>Kanamoto, Masayuki</au><au>Kimura, Hirohiko</au><au>Tsujikawa, Tetsuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2023-05</date><risdate>2023</risdate><volume>57</volume><issue>5</issue><spage>1477</spage><epage>1489</epage><pages>1477-1489</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background An inherently poor signal‐to‐noise ratio (SNR) causes inaccuracy and less precision in cerebral blood flow (CBF) and arterial transit time (ATT) when using arterial spin labeling (ASL). Deep neural network (DNN)‐based parameter estimation can solve these problems. Purpose To reduce the effects of Rician noise on ASL parameter estimation and compute unbiased CBF and ATT using simulation‐based supervised DNNs. Study Type Retrospective. Population One million simulation test data points, 17 healthy volunteers (five women and 12 men, 33.2 ± 14.6 years of age), and one patient with moyamoya disease. Field Strength/Sequence 3.0 T/Hadamard‐encoded pseudo‐continuous ASL with a three‐dimensional fast spin‐echo stack of spirals. Assessment Performances of DNN and conventional methods were compared. For test data, the normalized mean absolute error (NMAE) and normalized root mean squared error (NRMSE) between the ground truth and predicted values were evaluated. For in vivo data, baseline CBF and ATT and their relative changes with respect to SNR using artificial noise‐added images were assessed. Statistical Tests One‐way analysis of variance with post‐hoc Tukey's multiple comparison test, paired t‐test, and the Bland–Altman graphical analysis. Statistical significance was defined as P &lt; 0.05. Results For both CBF and ATT, NMAE and NRMSE were lower with DNN than with the conventional method. The baseline values were significantly smaller with DNN than with the conventional method (CBF in gray matter, 66 ± 10 vs. 71 ± 12 mL/100 g/min; white matter, 45 ± 6 vs. 46 ± 7 mL/100 g/min; ATT in gray matter, 1424 ± 201 vs. 1471 ± 154 msec). CBF and ATT increased with decreasing SNR; however, their change rates were smaller with DNN than were those with the conventional method. Higher CBF in the prolonged ATT region and clearer contrast in ATT were identified by DNN in a clinical case. Data Conclusion DNN outperformed the conventional method in terms of accuracy, precision, and noise immunity. Evidence Level: 3 Technical Efficacy: Stage 1</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36169654</pmid><doi>10.1002/jmri.28433</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8980-1044</orcidid><orcidid>https://orcid.org/0000-0002-0728-8057</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2023-05, Vol.57 (5), p.1477-1489
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2718961508
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Arterial spin labeling (ASL)
arterial transit time (ATT)
Artificial neural networks
Background noise
Blood flow
Cerebral blood flow
cerebral blood flow (CBF)
Cerebrovascular Circulation - physiology
Data points
deep neural network (DNN)
Female
Field strength
Humans
In vivo methods and tests
Labeling
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Moyamoya disease
Neural networks
Neural Networks, Computer
Noise
Parameter estimation
Population studies
Reproducibility of Results
Retrospective Studies
Simulation
Spin labeling
Spin Labels
Statistical analysis
Statistical tests
Substantia alba
Substantia grisea
Transit time
Variance analysis
title Estimation of Cerebral Blood Flow and Arterial Transit Time From Multi‐Delay Arterial Spin Labeling MRI Using a Simulation‐Based Supervised Deep Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Cerebral%20Blood%20Flow%20and%20Arterial%20Transit%20Time%20From%20Multi%E2%80%90Delay%20Arterial%20Spin%20Labeling%20MRI%20Using%20a%20Simulation%E2%80%90Based%20Supervised%20Deep%20Neural%20Network&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Ishida,%20Shota&rft.date=2023-05&rft.volume=57&rft.issue=5&rft.spage=1477&rft.epage=1489&rft.pages=1477-1489&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.28433&rft_dat=%3Cproquest_cross%3E2718961508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795967556&rft_id=info:pmid/36169654&rfr_iscdi=true