Delving Deeper into Mask Utilization in Video Object Segmentation

This paper focuses on the mask utilization of video object segmentation (VOS). The mask here mains the reference masks in the memory bank, i.e., several chosen high-quality predicted masks, which are usually used with the reference frames together. The reference masks depict the edge and contour fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.1-1
Hauptverfasser: Wang, Mengmeng, Mei, Jianbiao, Liu, Lina, Tian, Guanzhong, Liu, Yong, Pan, Zaisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the mask utilization of video object segmentation (VOS). The mask here mains the reference masks in the memory bank, i.e., several chosen high-quality predicted masks, which are usually used with the reference frames together. The reference masks depict the edge and contour features of the target object and indicate the boundary of the target against the background, while the reference frames contain the raw RGB information of the whole image. It is obvious that the reference masks could play a significant role in the VOS, but this is not well explored yet. To tackle this, we propose to investigate the mask advantages of both the encoder and the matcher. For the encoder, we provide a unified codebase to integrate and compare eight different mask-fused encoders. Half of them are inherited or summarized from existing methods, and the other half are devised by ourselves. We find the best configuration from our design and give valuable observations from the comparison. Then, we propose a new mask-enhanced matcher to reduce the background distraction and enhance the locality of the matching process. Combining the mask-fused encoder, mask-enhanced matcher and a standard decoder, we formulate a new architecture named MaskVOS, which sufficiently exploits the mask benefits for VOS. Qualitative and quantitative results demonstrate the effectiveness of our method. We hope our exploration could raise the attention of mask utilization in VOS.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2022.3208409