Ultrasensitive Colloidal Quantum-Dot Upconverters for Extended Short-Wave Infrared
Infrared-to-visible upconverters converting low-energy infrared to higher-energy visible light without bringing in complicated readout integrated circuits have triggered enormous excitement. However, existing upconverters suffer from limited sensing wavelengths, low photon-to-photon (p–p) efficiency...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-10, Vol.14 (40), p.45553-45561 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Infrared-to-visible upconverters converting low-energy infrared to higher-energy visible light without bringing in complicated readout integrated circuits have triggered enormous excitement. However, existing upconverters suffer from limited sensing wavelengths, low photon-to-photon (p–p) efficiency, and high minimum detectable infrared power. Here, we reported the colloidal quantum-dot (CQD) upconverters with unprecedented performance. By using HgTe CQDs as the sensing layer, the operation spectral ranges of the upconverters are, for the first time, extended to short-wave infrared. More importantly, the resistance-area products of the HgTe CQD photodetectors are carefully optimized by interface engineering to match with the visible light-emitting diodes so that the quantum efficiency and sensitivity of upconverters can be maximized. The integrated upconverters demonstrate a high p–p efficiency of nearly 30% and a low detection limit down to 20 μW cm–2. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c12002 |