A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns

Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 1999-10, Vol.37 (1), p.5-49
Hauptverfasser: Goldman, Sally A, Scott, Stephen D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 5
container_title Machine learning
container_volume 37
creator Goldman, Sally A
Scott, Stephen D
description Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our work is an efficient noise-tolerant algorithm (designed using the statistical query model) to PAC learn the class of one-dimensional geometric patterns. The second contribution of our work is an empirical study of our algorithm that provides some evidence that statistical query algorithms may be valuable for use in practice for handling noisy data.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1007681724516
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_27188358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27188358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-1ceb0d7824d798877cd6d288d29252e1120d0585d04877ff1dd01c0ef834d0573</originalsourceid><addsrcrecordid>eNpdjr1PwzAUxC0EEqUws1oMbIH3nPijbFHVFqQKkCgTQ2XiF5oqiYvtDPz3RMDEdDrd707H2CXCDYLIb8s7BNDKoBaFRHXEJih1noFU8phNwBiZKRTylJ3FuAcAoYyasLeSb3bkA6Wmsi23veOL7tCEH_eSBvfFfc0tf_RNpGzjWwq2T7xsP3xo0q7jyfM12dDzFfmO0ljkzzYlCn08Zye1bSNd_OmUvS4Xm_l9tn5aPczLdVYJqVOGFb2D00YUTs-M0bpyygljnJgJKQhRgANppINiDOsanQOsgGqTF2Og8ym7_t09BP85UEzbrokVta3tyQ9xKzQak0szglf_wL0fQj9-22qpQaPKZ_k34MFgoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757071639</pqid></control><display><type>article</type><title>A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns</title><source>Springer Nature - Complete Springer Journals</source><creator>Goldman, Sally A ; Scott, Stephen D</creator><creatorcontrib>Goldman, Sally A ; Scott, Stephen D</creatorcontrib><description>Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our work is an efficient noise-tolerant algorithm (designed using the statistical query model) to PAC learn the class of one-dimensional geometric patterns. The second contribution of our work is an empirical study of our algorithm that provides some evidence that statistical query algorithms may be valuable for use in practice for handling noisy data.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1023/A:1007681724516</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Studies</subject><ispartof>Machine learning, 1999-10, Vol.37 (1), p.5-49</ispartof><rights>Kluwer Academic Publishers 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-1ceb0d7824d798877cd6d288d29252e1120d0585d04877ff1dd01c0ef834d0573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Goldman, Sally A</creatorcontrib><creatorcontrib>Scott, Stephen D</creatorcontrib><title>A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns</title><title>Machine learning</title><description>Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our work is an efficient noise-tolerant algorithm (designed using the statistical query model) to PAC learn the class of one-dimensional geometric patterns. The second contribution of our work is an empirical study of our algorithm that provides some evidence that statistical query algorithms may be valuable for use in practice for handling noisy data.[PUBLICATION ABSTRACT]</description><subject>Studies</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjr1PwzAUxC0EEqUws1oMbIH3nPijbFHVFqQKkCgTQ2XiF5oqiYvtDPz3RMDEdDrd707H2CXCDYLIb8s7BNDKoBaFRHXEJih1noFU8phNwBiZKRTylJ3FuAcAoYyasLeSb3bkA6Wmsi23veOL7tCEH_eSBvfFfc0tf_RNpGzjWwq2T7xsP3xo0q7jyfM12dDzFfmO0ljkzzYlCn08Zye1bSNd_OmUvS4Xm_l9tn5aPczLdVYJqVOGFb2D00YUTs-M0bpyygljnJgJKQhRgANppINiDOsanQOsgGqTF2Og8ym7_t09BP85UEzbrokVta3tyQ9xKzQak0szglf_wL0fQj9-22qpQaPKZ_k34MFgoA</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Goldman, Sally A</creator><creator>Scott, Stephen D</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>19991001</creationdate><title>A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns</title><author>Goldman, Sally A ; Scott, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-1ceb0d7824d798877cd6d288d29252e1120d0585d04877ff1dd01c0ef834d0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldman, Sally A</creatorcontrib><creatorcontrib>Scott, Stephen D</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldman, Sally A</au><au>Scott, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns</atitle><jtitle>Machine learning</jtitle><date>1999-10-01</date><risdate>1999</risdate><volume>37</volume><issue>1</issue><spage>5</spage><epage>49</epage><pages>5-49</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our work is an efficient noise-tolerant algorithm (designed using the statistical query model) to PAC learn the class of one-dimensional geometric patterns. The second contribution of our work is an empirical study of our algorithm that provides some evidence that statistical query algorithms may be valuable for use in practice for handling noisy data.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1007681724516</doi><tpages>45</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 1999-10, Vol.37 (1), p.5-49
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_27188358
source Springer Nature - Complete Springer Journals
subjects Studies
title A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theoretical%20and%20Empirical%20Study%20of%20a%20Noise-Tolerant%20Algorithm%20to%20Learn%20Geometric%20Patterns&rft.jtitle=Machine%20learning&rft.au=Goldman,%20Sally%20A&rft.date=1999-10-01&rft.volume=37&rft.issue=1&rft.spage=5&rft.epage=49&rft.pages=5-49&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1023/A:1007681724516&rft_dat=%3Cproquest%3E27188358%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757071639&rft_id=info:pmid/&rfr_iscdi=true