Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2
Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted...
Gespeichert in:
Veröffentlicht in: | Langmuir 2022-10, Vol.38 (40), p.12333-12345 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12345 |
---|---|
container_issue | 40 |
container_start_page | 12333 |
container_title | Langmuir |
container_volume | 38 |
creator | Theofanous, Annita Sarli, Irene Fragou, Fotini Bletsa, Eleni Deligiannakis, Yiannis Louloudi, Maria |
description | Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted on SiO2 nanoparticles enable significant HAT activity versus DPPH radicals, while the homogeneous HyA counterparts are practically inactive. The {HyA@SiO2} hybrids consist of the two building blocks of HyA [d-glucuronic acid (GLA) and N-acetyl-d-glucosamine (GLAM)] covalently grafted on SiO2 nanoparticles. Based on the kinetic-thermodynamic Arrhenius study, we show that the {SiO2@GLA} hybrids operate spontaneously via hydrogen-atom-transfer (HAT) with a low activation energy barrier, i.e., by ΔΕ α ∼ 20 kJ/mol vs the nongrafted counterparts. Moreover, a doubly grafted {GLA@SiO2@GLAM} nanohybrid, i.e. that contains both components of HyA, shows the most significant antioxidant activity. FTIR and Raman analysis reveal that local H-bonding between the SiO2 matrix, GLA, and GLAM in {GLA@SiO2@GLAM} decreases the activation barrier of the HAT mechanism. Thus, {GLA@SiO2@GLAM} nanohybrids exemplify a novel family of materials that are not the mere sum of their components. The present case is the first example of non-phenolic molecules being able to perform antiradical HAT, opening new perspectives not foreseen until today. |
doi_str_mv | 10.1021/acs.langmuir.2c02021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718643790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718643790</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-33276acdb2bf9214fc150ee81c031b540c578a16876a8ac1713dd68c3424aa193</originalsourceid><addsrcrecordid>eNo1kF1LwzAYhYMoOKf_wItcepOZrzbtnWV-TBhs6LwuaZKOjDbRpAWH-N_N2Lw6cHjel8MDwC3BM4IpuZcqzjrptv1ow4wqTFN5BiYkoxhlBRXnYIIFZ0jwnF2Cqxh3GOOS8XICVOUG67-tlm6Ai70Ofmscqgbfo02QLrYmwMHDx_V6Ad-ktkp2ETb7hDbB6gh9C38We9mNwTurUKWshnPff3pn3BB_H97til6DizadmZtTTsHH89NmvkDL1cvrvFoiSbJyQIxRkUulG9q0JSW8VSTDxhREYUaajGOViUKSvEhUIRURhGmdF4pxyqUkJZuCu-Pfz-C_RhOHurdRmS6pMX6MNRWkyDkTJU4oPqJJXb3zY3BpWE1wffBZH8p_n_XJJ_sDxBZsRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718643790</pqid></control><display><type>article</type><title>Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2</title><source>ACS Publications</source><creator>Theofanous, Annita ; Sarli, Irene ; Fragou, Fotini ; Bletsa, Eleni ; Deligiannakis, Yiannis ; Louloudi, Maria</creator><creatorcontrib>Theofanous, Annita ; Sarli, Irene ; Fragou, Fotini ; Bletsa, Eleni ; Deligiannakis, Yiannis ; Louloudi, Maria</creatorcontrib><description>Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted on SiO2 nanoparticles enable significant HAT activity versus DPPH radicals, while the homogeneous HyA counterparts are practically inactive. The {HyA@SiO2} hybrids consist of the two building blocks of HyA [d-glucuronic acid (GLA) and N-acetyl-d-glucosamine (GLAM)] covalently grafted on SiO2 nanoparticles. Based on the kinetic-thermodynamic Arrhenius study, we show that the {SiO2@GLA} hybrids operate spontaneously via hydrogen-atom-transfer (HAT) with a low activation energy barrier, i.e., by ΔΕ α ∼ 20 kJ/mol vs the nongrafted counterparts. Moreover, a doubly grafted {GLA@SiO2@GLAM} nanohybrid, i.e. that contains both components of HyA, shows the most significant antioxidant activity. FTIR and Raman analysis reveal that local H-bonding between the SiO2 matrix, GLA, and GLAM in {GLA@SiO2@GLAM} decreases the activation barrier of the HAT mechanism. Thus, {GLA@SiO2@GLAM} nanohybrids exemplify a novel family of materials that are not the mere sum of their components. The present case is the first example of non-phenolic molecules being able to perform antiradical HAT, opening new perspectives not foreseen until today.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.2c02021</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2022-10, Vol.38 (40), p.12333-12345</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8396-8257 ; 0000-0002-9390-4222 ; 0000-0001-5302-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.2c02021$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.2c02021$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Theofanous, Annita</creatorcontrib><creatorcontrib>Sarli, Irene</creatorcontrib><creatorcontrib>Fragou, Fotini</creatorcontrib><creatorcontrib>Bletsa, Eleni</creatorcontrib><creatorcontrib>Deligiannakis, Yiannis</creatorcontrib><creatorcontrib>Louloudi, Maria</creatorcontrib><title>Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted on SiO2 nanoparticles enable significant HAT activity versus DPPH radicals, while the homogeneous HyA counterparts are practically inactive. The {HyA@SiO2} hybrids consist of the two building blocks of HyA [d-glucuronic acid (GLA) and N-acetyl-d-glucosamine (GLAM)] covalently grafted on SiO2 nanoparticles. Based on the kinetic-thermodynamic Arrhenius study, we show that the {SiO2@GLA} hybrids operate spontaneously via hydrogen-atom-transfer (HAT) with a low activation energy barrier, i.e., by ΔΕ α ∼ 20 kJ/mol vs the nongrafted counterparts. Moreover, a doubly grafted {GLA@SiO2@GLAM} nanohybrid, i.e. that contains both components of HyA, shows the most significant antioxidant activity. FTIR and Raman analysis reveal that local H-bonding between the SiO2 matrix, GLA, and GLAM in {GLA@SiO2@GLAM} decreases the activation barrier of the HAT mechanism. Thus, {GLA@SiO2@GLAM} nanohybrids exemplify a novel family of materials that are not the mere sum of their components. The present case is the first example of non-phenolic molecules being able to perform antiradical HAT, opening new perspectives not foreseen until today.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAYhYMoOKf_wItcepOZrzbtnWV-TBhs6LwuaZKOjDbRpAWH-N_N2Lw6cHjel8MDwC3BM4IpuZcqzjrptv1ow4wqTFN5BiYkoxhlBRXnYIIFZ0jwnF2Cqxh3GOOS8XICVOUG67-tlm6Ai70Ofmscqgbfo02QLrYmwMHDx_V6Ad-ktkp2ETb7hDbB6gh9C38We9mNwTurUKWshnPff3pn3BB_H97til6DizadmZtTTsHH89NmvkDL1cvrvFoiSbJyQIxRkUulG9q0JSW8VSTDxhREYUaajGOViUKSvEhUIRURhGmdF4pxyqUkJZuCu-Pfz-C_RhOHurdRmS6pMX6MNRWkyDkTJU4oPqJJXb3zY3BpWE1wffBZH8p_n_XJJ_sDxBZsRw</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Theofanous, Annita</creator><creator>Sarli, Irene</creator><creator>Fragou, Fotini</creator><creator>Bletsa, Eleni</creator><creator>Deligiannakis, Yiannis</creator><creator>Louloudi, Maria</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8396-8257</orcidid><orcidid>https://orcid.org/0000-0002-9390-4222</orcidid><orcidid>https://orcid.org/0000-0001-5302-3159</orcidid></search><sort><creationdate>20221011</creationdate><title>Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2</title><author>Theofanous, Annita ; Sarli, Irene ; Fragou, Fotini ; Bletsa, Eleni ; Deligiannakis, Yiannis ; Louloudi, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-33276acdb2bf9214fc150ee81c031b540c578a16876a8ac1713dd68c3424aa193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theofanous, Annita</creatorcontrib><creatorcontrib>Sarli, Irene</creatorcontrib><creatorcontrib>Fragou, Fotini</creatorcontrib><creatorcontrib>Bletsa, Eleni</creatorcontrib><creatorcontrib>Deligiannakis, Yiannis</creatorcontrib><creatorcontrib>Louloudi, Maria</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theofanous, Annita</au><au>Sarli, Irene</au><au>Fragou, Fotini</au><au>Bletsa, Eleni</au><au>Deligiannakis, Yiannis</au><au>Louloudi, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>38</volume><issue>40</issue><spage>12333</spage><epage>12345</epage><pages>12333-12345</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Hydrogen-atom-transfer (HAT) is among the key mechanisms of antioxidant and antiradical activity in natural systems. Hyaluronic acid (HyA) is currently used extensively in health and cosmetics applications. Herein it is shown that {HyA@SiO2} hybrids based on hyaluronic acid (HyA) components grafted on SiO2 nanoparticles enable significant HAT activity versus DPPH radicals, while the homogeneous HyA counterparts are practically inactive. The {HyA@SiO2} hybrids consist of the two building blocks of HyA [d-glucuronic acid (GLA) and N-acetyl-d-glucosamine (GLAM)] covalently grafted on SiO2 nanoparticles. Based on the kinetic-thermodynamic Arrhenius study, we show that the {SiO2@GLA} hybrids operate spontaneously via hydrogen-atom-transfer (HAT) with a low activation energy barrier, i.e., by ΔΕ α ∼ 20 kJ/mol vs the nongrafted counterparts. Moreover, a doubly grafted {GLA@SiO2@GLAM} nanohybrid, i.e. that contains both components of HyA, shows the most significant antioxidant activity. FTIR and Raman analysis reveal that local H-bonding between the SiO2 matrix, GLA, and GLAM in {GLA@SiO2@GLAM} decreases the activation barrier of the HAT mechanism. Thus, {GLA@SiO2@GLAM} nanohybrids exemplify a novel family of materials that are not the mere sum of their components. The present case is the first example of non-phenolic molecules being able to perform antiradical HAT, opening new perspectives not foreseen until today.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.2c02021</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8396-8257</orcidid><orcidid>https://orcid.org/0000-0002-9390-4222</orcidid><orcidid>https://orcid.org/0000-0001-5302-3159</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2022-10, Vol.38 (40), p.12333-12345 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2718643790 |
source | ACS Publications |
title | Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20Hydrogen-Atom-Transfer%20to%20DPPH%20Radicals%20by%20Hybrids%20of%20%7BHyaluronic-Acid%20Components%7D@SiO2&rft.jtitle=Langmuir&rft.au=Theofanous,%20Annita&rft.date=2022-10-11&rft.volume=38&rft.issue=40&rft.spage=12333&rft.epage=12345&rft.pages=12333-12345&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.2c02021&rft_dat=%3Cproquest_acs_j%3E2718643790%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718643790&rft_id=info:pmid/&rfr_iscdi=true |