Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice

Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2022-11, Vol.237 (11), p.4292-4302
Hauptverfasser: Iwahashi, Sayuki, Lyu, Jiajun, Tokumura, Kazuya, Osumi, Ryoma, Hiraiwa, Manami, Kubo, Takuya, Horie, Tetsuhiro, Demura, Satoru, Kawakami, Noriaki, Saito, Taku, Park, Gyujin, Fukasawa, Kazuya, Iezaki, Takashi, Suzuki, Akane, Tomizawa, Akane, Ochi, Hiroki, Hojo, Hironori, Ohba, Shinsuke, Hinoi, Eiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4302
container_issue 11
container_start_page 4292
container_title Journal of cellular physiology
container_volume 237
creator Iwahashi, Sayuki
Lyu, Jiajun
Tokumura, Kazuya
Osumi, Ryoma
Hiraiwa, Manami
Kubo, Takuya
Horie, Tetsuhiro
Demura, Satoru
Kawakami, Noriaki
Saito, Taku
Park, Gyujin
Fukasawa, Kazuya
Iezaki, Takashi
Suzuki, Akane
Tomizawa, Akane
Ochi, Hiroki
Hojo, Hironori
Ohba, Shinsuke
Hinoi, Eiichi
description Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability. Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.
doi_str_mv 10.1002/jcp.30883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718640727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718640727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALUdGhsOAFkCU2sEjraztOvKxG_GqkdlHWkefa0XiUxMH2ALPjEXhGngSHKSwqsbIsf_dIvoeQF8AugTF-tcf5UrC2FY_ICphuKqlq_pisyhtUupZwTp6mtGeMaS3EE3IuFCjQjV6R7-swWZ99mMxA_WQw-69mudLQ07xzdPPrx898nB01o58CNegtzdFMaQ4xu0g313dQBinuSlAMeMwu0TFYNyTqrQ-zyTuPNGEYfEg-LXb06J6Rs94MyT2_Py_I53dv79Yfqs3N-4_r602FErSoequx52i2vUDRsl7YLTYNKiNZ-STjuu25AlQSbC15qxTIxmjNwEpwbV2LC_L6lDvH8OXgUu5Gn9ANg5lcOKSON9AqyRreFPrqAd2HQyyLWZRoOQNVL-rNSWEMKUXXd3P0o4nHDli31NGVOro_dRT78j7xsB2d_Sf_7r-AqxP45gd3_H9S92l9e4r8DdlvlQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738201657</pqid></control><display><type>article</type><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</creator><creatorcontrib>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</creatorcontrib><description>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability. Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30883</identifier><identifier>PMID: 36161979</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adolescents ; Amino Acids ; Animal models ; Animals ; Apoptosis ; Bone turnover ; Cartilage ; Cell growth ; Cell proliferation ; Chemoreception ; Children ; Chondrocytes ; Chondrocytes - metabolism ; Deactivation ; Developmental stages ; Disease Models, Animal ; Embryogenesis ; general amino acid control pathway ; Growth plate ; Homeostasis ; idiopathic scoliosis ; Inactivation ; Large Neutral Amino Acid-Transporter 1 - genetics ; Large Neutral Amino Acid-Transporter 1 - metabolism ; L‐type amino acid transporter 1 ; mechanistic target of rapamycin complex 1 ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Pediatrics ; Rapamycin ; Scoliosis ; Scoliosis - genetics ; Scoliosis - metabolism ; Scoliosis - pathology ; Spinal curvature ; Spine ; Survivability ; Thorax ; TOR protein ; Vertebrae</subject><ispartof>Journal of cellular physiology, 2022-11, Vol.237 (11), p.4292-4302</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</citedby><cites>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</cites><orcidid>0000-0003-3346-1981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36161979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwahashi, Sayuki</creatorcontrib><creatorcontrib>Lyu, Jiajun</creatorcontrib><creatorcontrib>Tokumura, Kazuya</creatorcontrib><creatorcontrib>Osumi, Ryoma</creatorcontrib><creatorcontrib>Hiraiwa, Manami</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Horie, Tetsuhiro</creatorcontrib><creatorcontrib>Demura, Satoru</creatorcontrib><creatorcontrib>Kawakami, Noriaki</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Park, Gyujin</creatorcontrib><creatorcontrib>Fukasawa, Kazuya</creatorcontrib><creatorcontrib>Iezaki, Takashi</creatorcontrib><creatorcontrib>Suzuki, Akane</creatorcontrib><creatorcontrib>Tomizawa, Akane</creatorcontrib><creatorcontrib>Ochi, Hiroki</creatorcontrib><creatorcontrib>Hojo, Hironori</creatorcontrib><creatorcontrib>Ohba, Shinsuke</creatorcontrib><creatorcontrib>Hinoi, Eiichi</creatorcontrib><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability. Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</description><subject>Adolescents</subject><subject>Amino Acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bone turnover</subject><subject>Cartilage</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Chemoreception</subject><subject>Children</subject><subject>Chondrocytes</subject><subject>Chondrocytes - metabolism</subject><subject>Deactivation</subject><subject>Developmental stages</subject><subject>Disease Models, Animal</subject><subject>Embryogenesis</subject><subject>general amino acid control pathway</subject><subject>Growth plate</subject><subject>Homeostasis</subject><subject>idiopathic scoliosis</subject><subject>Inactivation</subject><subject>Large Neutral Amino Acid-Transporter 1 - genetics</subject><subject>Large Neutral Amino Acid-Transporter 1 - metabolism</subject><subject>L‐type amino acid transporter 1</subject><subject>mechanistic target of rapamycin complex 1</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Pediatrics</subject><subject>Rapamycin</subject><subject>Scoliosis</subject><subject>Scoliosis - genetics</subject><subject>Scoliosis - metabolism</subject><subject>Scoliosis - pathology</subject><subject>Spinal curvature</subject><subject>Spine</subject><subject>Survivability</subject><subject>Thorax</subject><subject>TOR protein</subject><subject>Vertebrae</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAUBWALUdGhsOAFkCU2sEjraztOvKxG_GqkdlHWkefa0XiUxMH2ALPjEXhGngSHKSwqsbIsf_dIvoeQF8AugTF-tcf5UrC2FY_ICphuKqlq_pisyhtUupZwTp6mtGeMaS3EE3IuFCjQjV6R7-swWZ99mMxA_WQw-69mudLQ07xzdPPrx898nB01o58CNegtzdFMaQ4xu0g313dQBinuSlAMeMwu0TFYNyTqrQ-zyTuPNGEYfEg-LXb06J6Rs94MyT2_Py_I53dv79Yfqs3N-4_r602FErSoequx52i2vUDRsl7YLTYNKiNZ-STjuu25AlQSbC15qxTIxmjNwEpwbV2LC_L6lDvH8OXgUu5Gn9ANg5lcOKSON9AqyRreFPrqAd2HQyyLWZRoOQNVL-rNSWEMKUXXd3P0o4nHDli31NGVOro_dRT78j7xsB2d_Sf_7r-AqxP45gd3_H9S92l9e4r8DdlvlQ0</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Iwahashi, Sayuki</creator><creator>Lyu, Jiajun</creator><creator>Tokumura, Kazuya</creator><creator>Osumi, Ryoma</creator><creator>Hiraiwa, Manami</creator><creator>Kubo, Takuya</creator><creator>Horie, Tetsuhiro</creator><creator>Demura, Satoru</creator><creator>Kawakami, Noriaki</creator><creator>Saito, Taku</creator><creator>Park, Gyujin</creator><creator>Fukasawa, Kazuya</creator><creator>Iezaki, Takashi</creator><creator>Suzuki, Akane</creator><creator>Tomizawa, Akane</creator><creator>Ochi, Hiroki</creator><creator>Hojo, Hironori</creator><creator>Ohba, Shinsuke</creator><creator>Hinoi, Eiichi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3346-1981</orcidid></search><sort><creationdate>202211</creationdate><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><author>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescents</topic><topic>Amino Acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bone turnover</topic><topic>Cartilage</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Chemoreception</topic><topic>Children</topic><topic>Chondrocytes</topic><topic>Chondrocytes - metabolism</topic><topic>Deactivation</topic><topic>Developmental stages</topic><topic>Disease Models, Animal</topic><topic>Embryogenesis</topic><topic>general amino acid control pathway</topic><topic>Growth plate</topic><topic>Homeostasis</topic><topic>idiopathic scoliosis</topic><topic>Inactivation</topic><topic>Large Neutral Amino Acid-Transporter 1 - genetics</topic><topic>Large Neutral Amino Acid-Transporter 1 - metabolism</topic><topic>L‐type amino acid transporter 1</topic><topic>mechanistic target of rapamycin complex 1</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Pediatrics</topic><topic>Rapamycin</topic><topic>Scoliosis</topic><topic>Scoliosis - genetics</topic><topic>Scoliosis - metabolism</topic><topic>Scoliosis - pathology</topic><topic>Spinal curvature</topic><topic>Spine</topic><topic>Survivability</topic><topic>Thorax</topic><topic>TOR protein</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwahashi, Sayuki</creatorcontrib><creatorcontrib>Lyu, Jiajun</creatorcontrib><creatorcontrib>Tokumura, Kazuya</creatorcontrib><creatorcontrib>Osumi, Ryoma</creatorcontrib><creatorcontrib>Hiraiwa, Manami</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Horie, Tetsuhiro</creatorcontrib><creatorcontrib>Demura, Satoru</creatorcontrib><creatorcontrib>Kawakami, Noriaki</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Park, Gyujin</creatorcontrib><creatorcontrib>Fukasawa, Kazuya</creatorcontrib><creatorcontrib>Iezaki, Takashi</creatorcontrib><creatorcontrib>Suzuki, Akane</creatorcontrib><creatorcontrib>Tomizawa, Akane</creatorcontrib><creatorcontrib>Ochi, Hiroki</creatorcontrib><creatorcontrib>Hojo, Hironori</creatorcontrib><creatorcontrib>Ohba, Shinsuke</creatorcontrib><creatorcontrib>Hinoi, Eiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwahashi, Sayuki</au><au>Lyu, Jiajun</au><au>Tokumura, Kazuya</au><au>Osumi, Ryoma</au><au>Hiraiwa, Manami</au><au>Kubo, Takuya</au><au>Horie, Tetsuhiro</au><au>Demura, Satoru</au><au>Kawakami, Noriaki</au><au>Saito, Taku</au><au>Park, Gyujin</au><au>Fukasawa, Kazuya</au><au>Iezaki, Takashi</au><au>Suzuki, Akane</au><au>Tomizawa, Akane</au><au>Ochi, Hiroki</au><au>Hojo, Hironori</au><au>Ohba, Shinsuke</au><au>Hinoi, Eiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2022-11</date><risdate>2022</risdate><volume>237</volume><issue>11</issue><spage>4292</spage><epage>4302</epage><pages>4292-4302</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability. Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36161979</pmid><doi>10.1002/jcp.30883</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3346-1981</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2022-11, Vol.237 (11), p.4292-4302
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2718640727
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Adolescents
Amino Acids
Animal models
Animals
Apoptosis
Bone turnover
Cartilage
Cell growth
Cell proliferation
Chemoreception
Children
Chondrocytes
Chondrocytes - metabolism
Deactivation
Developmental stages
Disease Models, Animal
Embryogenesis
general amino acid control pathway
Growth plate
Homeostasis
idiopathic scoliosis
Inactivation
Large Neutral Amino Acid-Transporter 1 - genetics
Large Neutral Amino Acid-Transporter 1 - metabolism
L‐type amino acid transporter 1
mechanistic target of rapamycin complex 1
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Pediatrics
Rapamycin
Scoliosis
Scoliosis - genetics
Scoliosis - metabolism
Scoliosis - pathology
Spinal curvature
Spine
Survivability
Thorax
TOR protein
Vertebrae
title Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20inactivation%20of%20the%20L%E2%80%90type%20amino%20acid%20transporter%20LAT1%20in%20chondrocytes%20models%20idiopathic%20scoliosis%20in%20mice&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Iwahashi,%20Sayuki&rft.date=2022-11&rft.volume=237&rft.issue=11&rft.spage=4292&rft.epage=4302&rft.pages=4292-4302&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30883&rft_dat=%3Cproquest_cross%3E2718640727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738201657&rft_id=info:pmid/36161979&rfr_iscdi=true