Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice
Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously d...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2022-11, Vol.237 (11), p.4292-4302 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4302 |
---|---|
container_issue | 11 |
container_start_page | 4292 |
container_title | Journal of cellular physiology |
container_volume | 237 |
creator | Iwahashi, Sayuki Lyu, Jiajun Tokumura, Kazuya Osumi, Ryoma Hiraiwa, Manami Kubo, Takuya Horie, Tetsuhiro Demura, Satoru Kawakami, Noriaki Saito, Taku Park, Gyujin Fukasawa, Kazuya Iezaki, Takashi Suzuki, Akane Tomizawa, Akane Ochi, Hiroki Hojo, Hironori Ohba, Shinsuke Hinoi, Eiichi |
description | Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. |
doi_str_mv | 10.1002/jcp.30883 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718640727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718640727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALUdGhsOAFkCU2sEjraztOvKxG_GqkdlHWkefa0XiUxMH2ALPjEXhGngSHKSwqsbIsf_dIvoeQF8AugTF-tcf5UrC2FY_ICphuKqlq_pisyhtUupZwTp6mtGeMaS3EE3IuFCjQjV6R7-swWZ99mMxA_WQw-69mudLQ07xzdPPrx898nB01o58CNegtzdFMaQ4xu0g313dQBinuSlAMeMwu0TFYNyTqrQ-zyTuPNGEYfEg-LXb06J6Rs94MyT2_Py_I53dv79Yfqs3N-4_r602FErSoequx52i2vUDRsl7YLTYNKiNZ-STjuu25AlQSbC15qxTIxmjNwEpwbV2LC_L6lDvH8OXgUu5Gn9ANg5lcOKSON9AqyRreFPrqAd2HQyyLWZRoOQNVL-rNSWEMKUXXd3P0o4nHDli31NGVOro_dRT78j7xsB2d_Sf_7r-AqxP45gd3_H9S92l9e4r8DdlvlQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738201657</pqid></control><display><type>article</type><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</creator><creatorcontrib>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</creatorcontrib><description>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30883</identifier><identifier>PMID: 36161979</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adolescents ; Amino Acids ; Animal models ; Animals ; Apoptosis ; Bone turnover ; Cartilage ; Cell growth ; Cell proliferation ; Chemoreception ; Children ; Chondrocytes ; Chondrocytes - metabolism ; Deactivation ; Developmental stages ; Disease Models, Animal ; Embryogenesis ; general amino acid control pathway ; Growth plate ; Homeostasis ; idiopathic scoliosis ; Inactivation ; Large Neutral Amino Acid-Transporter 1 - genetics ; Large Neutral Amino Acid-Transporter 1 - metabolism ; L‐type amino acid transporter 1 ; mechanistic target of rapamycin complex 1 ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Pediatrics ; Rapamycin ; Scoliosis ; Scoliosis - genetics ; Scoliosis - metabolism ; Scoliosis - pathology ; Spinal curvature ; Spine ; Survivability ; Thorax ; TOR protein ; Vertebrae</subject><ispartof>Journal of cellular physiology, 2022-11, Vol.237 (11), p.4292-4302</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</citedby><cites>FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</cites><orcidid>0000-0003-3346-1981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36161979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwahashi, Sayuki</creatorcontrib><creatorcontrib>Lyu, Jiajun</creatorcontrib><creatorcontrib>Tokumura, Kazuya</creatorcontrib><creatorcontrib>Osumi, Ryoma</creatorcontrib><creatorcontrib>Hiraiwa, Manami</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Horie, Tetsuhiro</creatorcontrib><creatorcontrib>Demura, Satoru</creatorcontrib><creatorcontrib>Kawakami, Noriaki</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Park, Gyujin</creatorcontrib><creatorcontrib>Fukasawa, Kazuya</creatorcontrib><creatorcontrib>Iezaki, Takashi</creatorcontrib><creatorcontrib>Suzuki, Akane</creatorcontrib><creatorcontrib>Tomizawa, Akane</creatorcontrib><creatorcontrib>Ochi, Hiroki</creatorcontrib><creatorcontrib>Hojo, Hironori</creatorcontrib><creatorcontrib>Ohba, Shinsuke</creatorcontrib><creatorcontrib>Hinoi, Eiichi</creatorcontrib><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</description><subject>Adolescents</subject><subject>Amino Acids</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Bone turnover</subject><subject>Cartilage</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Chemoreception</subject><subject>Children</subject><subject>Chondrocytes</subject><subject>Chondrocytes - metabolism</subject><subject>Deactivation</subject><subject>Developmental stages</subject><subject>Disease Models, Animal</subject><subject>Embryogenesis</subject><subject>general amino acid control pathway</subject><subject>Growth plate</subject><subject>Homeostasis</subject><subject>idiopathic scoliosis</subject><subject>Inactivation</subject><subject>Large Neutral Amino Acid-Transporter 1 - genetics</subject><subject>Large Neutral Amino Acid-Transporter 1 - metabolism</subject><subject>L‐type amino acid transporter 1</subject><subject>mechanistic target of rapamycin complex 1</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Pediatrics</subject><subject>Rapamycin</subject><subject>Scoliosis</subject><subject>Scoliosis - genetics</subject><subject>Scoliosis - metabolism</subject><subject>Scoliosis - pathology</subject><subject>Spinal curvature</subject><subject>Spine</subject><subject>Survivability</subject><subject>Thorax</subject><subject>TOR protein</subject><subject>Vertebrae</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAUBWALUdGhsOAFkCU2sEjraztOvKxG_GqkdlHWkefa0XiUxMH2ALPjEXhGngSHKSwqsbIsf_dIvoeQF8AugTF-tcf5UrC2FY_ICphuKqlq_pisyhtUupZwTp6mtGeMaS3EE3IuFCjQjV6R7-swWZ99mMxA_WQw-69mudLQ07xzdPPrx898nB01o58CNegtzdFMaQ4xu0g313dQBinuSlAMeMwu0TFYNyTqrQ-zyTuPNGEYfEg-LXb06J6Rs94MyT2_Py_I53dv79Yfqs3N-4_r602FErSoequx52i2vUDRsl7YLTYNKiNZ-STjuu25AlQSbC15qxTIxmjNwEpwbV2LC_L6lDvH8OXgUu5Gn9ANg5lcOKSON9AqyRreFPrqAd2HQyyLWZRoOQNVL-rNSWEMKUXXd3P0o4nHDli31NGVOro_dRT78j7xsB2d_Sf_7r-AqxP45gd3_H9S92l9e4r8DdlvlQ0</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Iwahashi, Sayuki</creator><creator>Lyu, Jiajun</creator><creator>Tokumura, Kazuya</creator><creator>Osumi, Ryoma</creator><creator>Hiraiwa, Manami</creator><creator>Kubo, Takuya</creator><creator>Horie, Tetsuhiro</creator><creator>Demura, Satoru</creator><creator>Kawakami, Noriaki</creator><creator>Saito, Taku</creator><creator>Park, Gyujin</creator><creator>Fukasawa, Kazuya</creator><creator>Iezaki, Takashi</creator><creator>Suzuki, Akane</creator><creator>Tomizawa, Akane</creator><creator>Ochi, Hiroki</creator><creator>Hojo, Hironori</creator><creator>Ohba, Shinsuke</creator><creator>Hinoi, Eiichi</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3346-1981</orcidid></search><sort><creationdate>202211</creationdate><title>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</title><author>Iwahashi, Sayuki ; Lyu, Jiajun ; Tokumura, Kazuya ; Osumi, Ryoma ; Hiraiwa, Manami ; Kubo, Takuya ; Horie, Tetsuhiro ; Demura, Satoru ; Kawakami, Noriaki ; Saito, Taku ; Park, Gyujin ; Fukasawa, Kazuya ; Iezaki, Takashi ; Suzuki, Akane ; Tomizawa, Akane ; Ochi, Hiroki ; Hojo, Hironori ; Ohba, Shinsuke ; Hinoi, Eiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4193-fd9cf2cabf3c380f3dbc77c6a404650298f261c641d542866147a9901d41e8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescents</topic><topic>Amino Acids</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Bone turnover</topic><topic>Cartilage</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Chemoreception</topic><topic>Children</topic><topic>Chondrocytes</topic><topic>Chondrocytes - metabolism</topic><topic>Deactivation</topic><topic>Developmental stages</topic><topic>Disease Models, Animal</topic><topic>Embryogenesis</topic><topic>general amino acid control pathway</topic><topic>Growth plate</topic><topic>Homeostasis</topic><topic>idiopathic scoliosis</topic><topic>Inactivation</topic><topic>Large Neutral Amino Acid-Transporter 1 - genetics</topic><topic>Large Neutral Amino Acid-Transporter 1 - metabolism</topic><topic>L‐type amino acid transporter 1</topic><topic>mechanistic target of rapamycin complex 1</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Pediatrics</topic><topic>Rapamycin</topic><topic>Scoliosis</topic><topic>Scoliosis - genetics</topic><topic>Scoliosis - metabolism</topic><topic>Scoliosis - pathology</topic><topic>Spinal curvature</topic><topic>Spine</topic><topic>Survivability</topic><topic>Thorax</topic><topic>TOR protein</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwahashi, Sayuki</creatorcontrib><creatorcontrib>Lyu, Jiajun</creatorcontrib><creatorcontrib>Tokumura, Kazuya</creatorcontrib><creatorcontrib>Osumi, Ryoma</creatorcontrib><creatorcontrib>Hiraiwa, Manami</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Horie, Tetsuhiro</creatorcontrib><creatorcontrib>Demura, Satoru</creatorcontrib><creatorcontrib>Kawakami, Noriaki</creatorcontrib><creatorcontrib>Saito, Taku</creatorcontrib><creatorcontrib>Park, Gyujin</creatorcontrib><creatorcontrib>Fukasawa, Kazuya</creatorcontrib><creatorcontrib>Iezaki, Takashi</creatorcontrib><creatorcontrib>Suzuki, Akane</creatorcontrib><creatorcontrib>Tomizawa, Akane</creatorcontrib><creatorcontrib>Ochi, Hiroki</creatorcontrib><creatorcontrib>Hojo, Hironori</creatorcontrib><creatorcontrib>Ohba, Shinsuke</creatorcontrib><creatorcontrib>Hinoi, Eiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwahashi, Sayuki</au><au>Lyu, Jiajun</au><au>Tokumura, Kazuya</au><au>Osumi, Ryoma</au><au>Hiraiwa, Manami</au><au>Kubo, Takuya</au><au>Horie, Tetsuhiro</au><au>Demura, Satoru</au><au>Kawakami, Noriaki</au><au>Saito, Taku</au><au>Park, Gyujin</au><au>Fukasawa, Kazuya</au><au>Iezaki, Takashi</au><au>Suzuki, Akane</au><au>Tomizawa, Akane</au><au>Ochi, Hiroki</au><au>Hojo, Hironori</au><au>Ohba, Shinsuke</au><au>Hinoi, Eiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2022-11</date><risdate>2022</risdate><volume>237</volume><issue>11</issue><spage>4292</spage><epage>4302</epage><pages>4292-4302</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Scoliosis, usually diagnosed in childhood and early adolescence, is an abnormal lateral curvature of the spine. L‐type amino acid transporter 1 (LAT1), encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types. We previously demonstrated the pivotal role of LAT1 on bone homeostasis in mice, and the expression of LAT1/SLC7A5 in vertebral cartilage of pediatric scoliosis patients; however, its role in chondrocytes on spinal homeostasis and implications regarding the underlying mechanisms during the onset and progression of scoliosis, remain unknown. Here, we identified LAT1 in mouse chondrocytes as an important regulator of postnatal spinal homeostasis. Conditional inactivation of LAT1 in chondrocytes resulted in a postnatal‐onset severe thoracic scoliosis at the early adolescent stage with normal embryonic spinal development. Histological analyses revealed that Slc7a5 deletion in chondrocytes led to general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. Furthermore, loss of Slc7a5 in chondrocytes activated the general amino acid control (GAAC) pathway but inactivated the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the vertebrae. The spinal deformity in Slc7a5‐deficient mice was corrected by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway. These findings suggest that the LAT1‐GAAC pathway in chondrocytes plays a critical role in the maintenance of proper spinal homeostasis by modulating cell proliferation and survivability.
Inactivation of LAT1/Slc7a5 in chondrocytes led to severe scoliosis and a general disorganization of chondrocytes in the vertebral growth plate, along with an increase in apoptosis and a decrease in cell proliferation. In addition, LAT1/Slc7a5 deficiency activated the GAAC pathway and inactivated the mTORC1 pathway. Scoliosis in LAT1/Slc7a5 deficient mice was rescued by genetic inactivation of the GAAC pathway, but not by genetic activation of the mTORC1 pathway.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36161979</pmid><doi>10.1002/jcp.30883</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3346-1981</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2022-11, Vol.237 (11), p.4292-4302 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_2718640727 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Adolescents Amino Acids Animal models Animals Apoptosis Bone turnover Cartilage Cell growth Cell proliferation Chemoreception Children Chondrocytes Chondrocytes - metabolism Deactivation Developmental stages Disease Models, Animal Embryogenesis general amino acid control pathway Growth plate Homeostasis idiopathic scoliosis Inactivation Large Neutral Amino Acid-Transporter 1 - genetics Large Neutral Amino Acid-Transporter 1 - metabolism L‐type amino acid transporter 1 mechanistic target of rapamycin complex 1 Mechanistic Target of Rapamycin Complex 1 - metabolism Mice Pediatrics Rapamycin Scoliosis Scoliosis - genetics Scoliosis - metabolism Scoliosis - pathology Spinal curvature Spine Survivability Thorax TOR protein Vertebrae |
title | Conditional inactivation of the L‐type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20inactivation%20of%20the%20L%E2%80%90type%20amino%20acid%20transporter%20LAT1%20in%20chondrocytes%20models%20idiopathic%20scoliosis%20in%20mice&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Iwahashi,%20Sayuki&rft.date=2022-11&rft.volume=237&rft.issue=11&rft.spage=4292&rft.epage=4302&rft.pages=4292-4302&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30883&rft_dat=%3Cproquest_cross%3E2718640727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738201657&rft_id=info:pmid/36161979&rfr_iscdi=true |