Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries

Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (39), p.44859-44868
Hauptverfasser: Liu, Bo, Shi, Xiaowen, Gu, Lanhui, Wen, Yufeng, Sun, Xinyuan, Ruan, Wen, Zhou, Shenlin, Jiang, Daguo, Han, Xiang, Zhang, Wenqing, Shi, Siqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44868
container_issue 39
container_start_page 44859
container_title ACS applied materials & interfaces
container_volume 14
creator Liu, Bo
Shi, Xiaowen
Gu, Lanhui
Wen, Yufeng
Sun, Xinyuan
Ruan, Wen
Zhou, Shenlin
Jiang, Daguo
Han, Xiang
Zhang, Wenqing
Shi, Siqi
description Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXO4F (M–X = Al–P and Mg–S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXO4F (M–X = Al–P and Mg–S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXO4F (M–X = Al–P and Mg–S) are promising cathode coatings, among which LiAlPO4F has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.
doi_str_mv 10.1021/acsami.2c12732
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718632147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718632147</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-527a59d4ec8ed77aa5565b42f9d2c36a884c5d7103e5517e0ccbf7d206ab11073</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhhujiYhePfeIJsO2a9dx8ICLCAkEEjXhtnx0HYxsLa7d3f_gP_SXWALx9D2HN0--PAjdUzKkhNEnUA6aasgUZTJmF6hHR5xHKRPs8p85v0Y3zu0JSWJGRA8dZsZV2513uDLe4nm1WC_5BA8Wv98_a_yMx3WAFQZT4MU24PsDBocz8DtbaJxZ8JXZOlzaFk-DJ1rpNnADRukg87uqa6KZNfgFvNdtpd0tuiqhdvrufPvoc_L6kU2j-fJtlo3nETAW-0gwCWJUcK1SXUgJIEQiNpyVo4KpOIE05UoUkpJYC0GlJkptSlkwksCGUiLjPhqcvIfWfnXa-bypnNJ1DUbbzuVM0jQ0oPw4fTxNQ8F8b7vWhMdySvJj1vyUNT9njf8AooRs7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718632147</pqid></control><display><type>article</type><title>Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries</title><source>American Chemical Society Journals</source><creator>Liu, Bo ; Shi, Xiaowen ; Gu, Lanhui ; Wen, Yufeng ; Sun, Xinyuan ; Ruan, Wen ; Zhou, Shenlin ; Jiang, Daguo ; Han, Xiang ; Zhang, Wenqing ; Shi, Siqi</creator><creatorcontrib>Liu, Bo ; Shi, Xiaowen ; Gu, Lanhui ; Wen, Yufeng ; Sun, Xinyuan ; Ruan, Wen ; Zhou, Shenlin ; Jiang, Daguo ; Han, Xiang ; Zhang, Wenqing ; Shi, Siqi</creatorcontrib><description>Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXO4F (M–X = Al–P and Mg–S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXO4F (M–X = Al–P and Mg–S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXO4F (M–X = Al–P and Mg–S) are promising cathode coatings, among which LiAlPO4F has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c12732</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2022-10, Vol.14 (39), p.44859-44868</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2551-6375 ; 0000-0001-8988-9763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c12732$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c12732$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Gu, Lanhui</creatorcontrib><creatorcontrib>Wen, Yufeng</creatorcontrib><creatorcontrib>Sun, Xinyuan</creatorcontrib><creatorcontrib>Ruan, Wen</creatorcontrib><creatorcontrib>Zhou, Shenlin</creatorcontrib><creatorcontrib>Jiang, Daguo</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><title>Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXO4F (M–X = Al–P and Mg–S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXO4F (M–X = Al–P and Mg–S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXO4F (M–X = Al–P and Mg–S) are promising cathode coatings, among which LiAlPO4F has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAYhhujiYhePfeIJsO2a9dx8ICLCAkEEjXhtnx0HYxsLa7d3f_gP_SXWALx9D2HN0--PAjdUzKkhNEnUA6aasgUZTJmF6hHR5xHKRPs8p85v0Y3zu0JSWJGRA8dZsZV2513uDLe4nm1WC_5BA8Wv98_a_yMx3WAFQZT4MU24PsDBocz8DtbaJxZ8JXZOlzaFk-DJ1rpNnADRukg87uqa6KZNfgFvNdtpd0tuiqhdvrufPvoc_L6kU2j-fJtlo3nETAW-0gwCWJUcK1SXUgJIEQiNpyVo4KpOIE05UoUkpJYC0GlJkptSlkwksCGUiLjPhqcvIfWfnXa-bypnNJ1DUbbzuVM0jQ0oPw4fTxNQ8F8b7vWhMdySvJj1vyUNT9njf8AooRs7g</recordid><startdate>20221005</startdate><enddate>20221005</enddate><creator>Liu, Bo</creator><creator>Shi, Xiaowen</creator><creator>Gu, Lanhui</creator><creator>Wen, Yufeng</creator><creator>Sun, Xinyuan</creator><creator>Ruan, Wen</creator><creator>Zhou, Shenlin</creator><creator>Jiang, Daguo</creator><creator>Han, Xiang</creator><creator>Zhang, Wenqing</creator><creator>Shi, Siqi</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0001-8988-9763</orcidid></search><sort><creationdate>20221005</creationdate><title>Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries</title><author>Liu, Bo ; Shi, Xiaowen ; Gu, Lanhui ; Wen, Yufeng ; Sun, Xinyuan ; Ruan, Wen ; Zhou, Shenlin ; Jiang, Daguo ; Han, Xiang ; Zhang, Wenqing ; Shi, Siqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-527a59d4ec8ed77aa5565b42f9d2c36a884c5d7103e5517e0ccbf7d206ab11073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Shi, Xiaowen</creatorcontrib><creatorcontrib>Gu, Lanhui</creatorcontrib><creatorcontrib>Wen, Yufeng</creatorcontrib><creatorcontrib>Sun, Xinyuan</creatorcontrib><creatorcontrib>Ruan, Wen</creatorcontrib><creatorcontrib>Zhou, Shenlin</creatorcontrib><creatorcontrib>Jiang, Daguo</creatorcontrib><creatorcontrib>Han, Xiang</creatorcontrib><creatorcontrib>Zhang, Wenqing</creatorcontrib><creatorcontrib>Shi, Siqi</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bo</au><au>Shi, Xiaowen</au><au>Gu, Lanhui</au><au>Wen, Yufeng</au><au>Sun, Xinyuan</au><au>Ruan, Wen</au><au>Zhou, Shenlin</au><au>Jiang, Daguo</au><au>Han, Xiang</au><au>Zhang, Wenqing</au><au>Shi, Siqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-05</date><risdate>2022</risdate><volume>14</volume><issue>39</issue><spage>44859</spage><epage>44868</epage><pages>44859-44868</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXO4F (M–X = Al–P and Mg–S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXO4F (M–X = Al–P and Mg–S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXO4F (M–X = Al–P and Mg–S) are promising cathode coatings, among which LiAlPO4F has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c12732</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2551-6375</orcidid><orcidid>https://orcid.org/0000-0001-8988-9763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-10, Vol.14 (39), p.44859-44868
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2718632147
source American Chemical Society Journals
subjects Applications of Polymer, Composite, and Coating Materials
title Insights into LiMXO4F (M–X = Al–P and Mg–S) as Cathode Coatings for High-Performance Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20LiMXO4F%20(M%E2%80%93X%20=%20Al%E2%80%93P%20and%20Mg%E2%80%93S)%20as%20Cathode%20Coatings%20for%20High-Performance%20Lithium-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Bo&rft.date=2022-10-05&rft.volume=14&rft.issue=39&rft.spage=44859&rft.epage=44868&rft.pages=44859-44868&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c12732&rft_dat=%3Cproquest_acs_j%3E2718632147%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718632147&rft_id=info:pmid/&rfr_iscdi=true