CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79

Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2022-10, Vol.323, p.111406-111406, Article 111406
Hauptverfasser: Sun, Wenjun, Wei, Jianglan, Wu, Guoming, Xu, Haishen, Chen, Ying, Yao, Min, Zhan, Junyi, Yan, Jun, Wu, Na, Chen, Hui, Bu, Tongliang, Tang, Zizong, Li, Qingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111406
container_issue
container_start_page 111406
container_title Plant science (Limerick)
container_volume 323
creator Sun, Wenjun
Wei, Jianglan
Wu, Guoming
Xu, Haishen
Chen, Ying
Yao, Min
Zhan, Junyi
Yan, Jun
Wu, Na
Chen, Hui
Bu, Tongliang
Tang, Zizong
Li, Qingfeng
description Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger–homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles. Transient overexpression of CqZF-HD14 promotes photosynthetic pigment accumulation under drought stress, strengthens the antioxidant system, and in turn enhances drought tolerance. Comprehensive genome-wide family analysis and expression profiling identified CqNAC79 and CqHIPP34 regulated by CqZF-HD14, and their interactions were further determined by bimolecular fluorescence complementation (BIFC). Moreover, physiological and biochemical analyses and transient overexpression also revealed that CqNAC79 and CqHIPP34 resist drought by promoting the accumulation of photosynthetic pigments and maintaining antioxidant capacity under drought stress. The synergistic effect of CqZF-HD14 with CqNAC79 or CqHIPP34 further enhanced the drought tolerance of quinoa seedlings. Taken together, the results indicate that CqZF-HD14, CqNAC79 and CqHIPP34 may be important contributors to the drought tolerance regulatory network in quinoa, and these findings add new members to the drought tolerance gene pool. [Display omitted] •CqZF-HD, CqNAC and CqHIPP families were identified in quinoa genome.•CqZF-HD14 can contribute to drought tolerance in quinoa seedlings.•CqZF-HD14 resists drought stress by interacting with CqNAC79 and CqHIPP34.•CqNAC79 and CqHIPP34 also contribute to drought stress resistance.
doi_str_mv 10.1016/j.plantsci.2022.111406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718342768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016894522200231X</els_id><sourcerecordid>2718342768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-68a279fb2ccfb97e9fffc740e530b4002e4f3268b6b3fa7103e84a746ffda4c83</originalsourceid><addsrcrecordid>eNqNkU1PwzAMhiMEEuPjL6AcuXTkq0l7A5WPISHgABcuUZo6LFNptyQD8e_JGJzhZNl-bNnvi9AJJVNKqDxbTJe9GVK0fsoIY1NKqSByB01opXjBWFnvokkGq6IWJdtHBzEuCCGsLNUEuWb1cl3MLqnAMMzNYCHiLozr13nCaewhbErYD3i19sNocAToej-8Rpzm31jupUzZ5McBf_g0x81qdvv4yAU2Q5eT-4tG1Udoz5k-wvFPPETP11dPzay4e7i5bS7uCstVlQpZGaZq1zJrXVsrqJ1zVgkCJSetyDeDcJzJqpUtd0ZRwqESRgnpXGeErfghOt3uXYZxtYaY9JuPFvosEIzrqJmiFRdMyX-gsq4VYUSpjMotasMYYwCnl8G_mfCpKdEbD_RC_3qgNx7orQd58Hw7CPnndw9BZwKyop0PYJPuRv_Xii914ZJn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699702077</pqid></control><display><type>article</type><title>CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Sun, Wenjun ; Wei, Jianglan ; Wu, Guoming ; Xu, Haishen ; Chen, Ying ; Yao, Min ; Zhan, Junyi ; Yan, Jun ; Wu, Na ; Chen, Hui ; Bu, Tongliang ; Tang, Zizong ; Li, Qingfeng</creator><creatorcontrib>Sun, Wenjun ; Wei, Jianglan ; Wu, Guoming ; Xu, Haishen ; Chen, Ying ; Yao, Min ; Zhan, Junyi ; Yan, Jun ; Wu, Na ; Chen, Hui ; Bu, Tongliang ; Tang, Zizong ; Li, Qingfeng</creatorcontrib><description>Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger–homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles. Transient overexpression of CqZF-HD14 promotes photosynthetic pigment accumulation under drought stress, strengthens the antioxidant system, and in turn enhances drought tolerance. Comprehensive genome-wide family analysis and expression profiling identified CqNAC79 and CqHIPP34 regulated by CqZF-HD14, and their interactions were further determined by bimolecular fluorescence complementation (BIFC). Moreover, physiological and biochemical analyses and transient overexpression also revealed that CqNAC79 and CqHIPP34 resist drought by promoting the accumulation of photosynthetic pigments and maintaining antioxidant capacity under drought stress. The synergistic effect of CqZF-HD14 with CqNAC79 or CqHIPP34 further enhanced the drought tolerance of quinoa seedlings. Taken together, the results indicate that CqZF-HD14, CqNAC79 and CqHIPP34 may be important contributors to the drought tolerance regulatory network in quinoa, and these findings add new members to the drought tolerance gene pool. [Display omitted] •CqZF-HD, CqNAC and CqHIPP families were identified in quinoa genome.•CqZF-HD14 can contribute to drought tolerance in quinoa seedlings.•CqZF-HD14 resists drought stress by interacting with CqNAC79 and CqHIPP34.•CqNAC79 and CqHIPP34 also contribute to drought stress resistance.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2022.111406</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>antioxidant activity ; Antioxidant capacity ; antioxidants ; Chenopodium quinoa ; CqHIPP34 ; CqNAC79 ; CqZF-HD14 ; crop yield ; drought ; Drought stress ; drought tolerance ; family ; fluorescence ; gene pool ; photosynthesis ; pigments ; plant development ; Quinoa ; stress tolerance ; synergism ; water stress ; zinc</subject><ispartof>Plant science (Limerick), 2022-10, Vol.323, p.111406-111406, Article 111406</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-68a279fb2ccfb97e9fffc740e530b4002e4f3268b6b3fa7103e84a746ffda4c83</citedby><cites>FETCH-LOGICAL-c378t-68a279fb2ccfb97e9fffc740e530b4002e4f3268b6b3fa7103e84a746ffda4c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plantsci.2022.111406$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Sun, Wenjun</creatorcontrib><creatorcontrib>Wei, Jianglan</creatorcontrib><creatorcontrib>Wu, Guoming</creatorcontrib><creatorcontrib>Xu, Haishen</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Yao, Min</creatorcontrib><creatorcontrib>Zhan, Junyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Na</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Bu, Tongliang</creatorcontrib><creatorcontrib>Tang, Zizong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><title>CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79</title><title>Plant science (Limerick)</title><description>Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger–homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles. Transient overexpression of CqZF-HD14 promotes photosynthetic pigment accumulation under drought stress, strengthens the antioxidant system, and in turn enhances drought tolerance. Comprehensive genome-wide family analysis and expression profiling identified CqNAC79 and CqHIPP34 regulated by CqZF-HD14, and their interactions were further determined by bimolecular fluorescence complementation (BIFC). Moreover, physiological and biochemical analyses and transient overexpression also revealed that CqNAC79 and CqHIPP34 resist drought by promoting the accumulation of photosynthetic pigments and maintaining antioxidant capacity under drought stress. The synergistic effect of CqZF-HD14 with CqNAC79 or CqHIPP34 further enhanced the drought tolerance of quinoa seedlings. Taken together, the results indicate that CqZF-HD14, CqNAC79 and CqHIPP34 may be important contributors to the drought tolerance regulatory network in quinoa, and these findings add new members to the drought tolerance gene pool. [Display omitted] •CqZF-HD, CqNAC and CqHIPP families were identified in quinoa genome.•CqZF-HD14 can contribute to drought tolerance in quinoa seedlings.•CqZF-HD14 resists drought stress by interacting with CqNAC79 and CqHIPP34.•CqNAC79 and CqHIPP34 also contribute to drought stress resistance.</description><subject>antioxidant activity</subject><subject>Antioxidant capacity</subject><subject>antioxidants</subject><subject>Chenopodium quinoa</subject><subject>CqHIPP34</subject><subject>CqNAC79</subject><subject>CqZF-HD14</subject><subject>crop yield</subject><subject>drought</subject><subject>Drought stress</subject><subject>drought tolerance</subject><subject>family</subject><subject>fluorescence</subject><subject>gene pool</subject><subject>photosynthesis</subject><subject>pigments</subject><subject>plant development</subject><subject>Quinoa</subject><subject>stress tolerance</subject><subject>synergism</subject><subject>water stress</subject><subject>zinc</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PwzAMhiMEEuPjL6AcuXTkq0l7A5WPISHgABcuUZo6LFNptyQD8e_JGJzhZNl-bNnvi9AJJVNKqDxbTJe9GVK0fsoIY1NKqSByB01opXjBWFnvokkGq6IWJdtHBzEuCCGsLNUEuWb1cl3MLqnAMMzNYCHiLozr13nCaewhbErYD3i19sNocAToej-8Rpzm31jupUzZ5McBf_g0x81qdvv4yAU2Q5eT-4tG1Udoz5k-wvFPPETP11dPzay4e7i5bS7uCstVlQpZGaZq1zJrXVsrqJ1zVgkCJSetyDeDcJzJqpUtd0ZRwqESRgnpXGeErfghOt3uXYZxtYaY9JuPFvosEIzrqJmiFRdMyX-gsq4VYUSpjMotasMYYwCnl8G_mfCpKdEbD_RC_3qgNx7orQd58Hw7CPnndw9BZwKyop0PYJPuRv_Xii914ZJn</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Sun, Wenjun</creator><creator>Wei, Jianglan</creator><creator>Wu, Guoming</creator><creator>Xu, Haishen</creator><creator>Chen, Ying</creator><creator>Yao, Min</creator><creator>Zhan, Junyi</creator><creator>Yan, Jun</creator><creator>Wu, Na</creator><creator>Chen, Hui</creator><creator>Bu, Tongliang</creator><creator>Tang, Zizong</creator><creator>Li, Qingfeng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202210</creationdate><title>CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79</title><author>Sun, Wenjun ; Wei, Jianglan ; Wu, Guoming ; Xu, Haishen ; Chen, Ying ; Yao, Min ; Zhan, Junyi ; Yan, Jun ; Wu, Na ; Chen, Hui ; Bu, Tongliang ; Tang, Zizong ; Li, Qingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-68a279fb2ccfb97e9fffc740e530b4002e4f3268b6b3fa7103e84a746ffda4c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antioxidant activity</topic><topic>Antioxidant capacity</topic><topic>antioxidants</topic><topic>Chenopodium quinoa</topic><topic>CqHIPP34</topic><topic>CqNAC79</topic><topic>CqZF-HD14</topic><topic>crop yield</topic><topic>drought</topic><topic>Drought stress</topic><topic>drought tolerance</topic><topic>family</topic><topic>fluorescence</topic><topic>gene pool</topic><topic>photosynthesis</topic><topic>pigments</topic><topic>plant development</topic><topic>Quinoa</topic><topic>stress tolerance</topic><topic>synergism</topic><topic>water stress</topic><topic>zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wenjun</creatorcontrib><creatorcontrib>Wei, Jianglan</creatorcontrib><creatorcontrib>Wu, Guoming</creatorcontrib><creatorcontrib>Xu, Haishen</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Yao, Min</creatorcontrib><creatorcontrib>Zhan, Junyi</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Na</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Bu, Tongliang</creatorcontrib><creatorcontrib>Tang, Zizong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wenjun</au><au>Wei, Jianglan</au><au>Wu, Guoming</au><au>Xu, Haishen</au><au>Chen, Ying</au><au>Yao, Min</au><au>Zhan, Junyi</au><au>Yan, Jun</au><au>Wu, Na</au><au>Chen, Hui</au><au>Bu, Tongliang</au><au>Tang, Zizong</au><au>Li, Qingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79</atitle><jtitle>Plant science (Limerick)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>323</volume><spage>111406</spage><epage>111406</epage><pages>111406-111406</pages><artnum>111406</artnum><issn>0168-9452</issn><eissn>1873-2259</eissn><abstract>Drought stress is a key agricultural problem that restricts plant development and crop yield. Research on quinoa (Chenopodium quinoa), a nutrient-rich crop with strong stress resistance, has been limited in terms of the molecular regulation of its adaptation to drought stress. This study identified the zinc finger–homeodomain (ZF-HD) family in quinoa and a drought-responsive Chenopodium quinoa ZF-HD14 (CqZF-HD14) through expression profiles. Transient overexpression of CqZF-HD14 promotes photosynthetic pigment accumulation under drought stress, strengthens the antioxidant system, and in turn enhances drought tolerance. Comprehensive genome-wide family analysis and expression profiling identified CqNAC79 and CqHIPP34 regulated by CqZF-HD14, and their interactions were further determined by bimolecular fluorescence complementation (BIFC). Moreover, physiological and biochemical analyses and transient overexpression also revealed that CqNAC79 and CqHIPP34 resist drought by promoting the accumulation of photosynthetic pigments and maintaining antioxidant capacity under drought stress. The synergistic effect of CqZF-HD14 with CqNAC79 or CqHIPP34 further enhanced the drought tolerance of quinoa seedlings. Taken together, the results indicate that CqZF-HD14, CqNAC79 and CqHIPP34 may be important contributors to the drought tolerance regulatory network in quinoa, and these findings add new members to the drought tolerance gene pool. [Display omitted] •CqZF-HD, CqNAC and CqHIPP families were identified in quinoa genome.•CqZF-HD14 can contribute to drought tolerance in quinoa seedlings.•CqZF-HD14 resists drought stress by interacting with CqNAC79 and CqHIPP34.•CqNAC79 and CqHIPP34 also contribute to drought stress resistance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.plantsci.2022.111406</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9452
ispartof Plant science (Limerick), 2022-10, Vol.323, p.111406-111406, Article 111406
issn 0168-9452
1873-2259
language eng
recordid cdi_proquest_miscellaneous_2718342768
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects antioxidant activity
Antioxidant capacity
antioxidants
Chenopodium quinoa
CqHIPP34
CqNAC79
CqZF-HD14
crop yield
drought
Drought stress
drought tolerance
family
fluorescence
gene pool
photosynthesis
pigments
plant development
Quinoa
stress tolerance
synergism
water stress
zinc
title CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CqZF-HD14%20enhances%20drought%20tolerance%20in%20quinoa%20seedlings%20through%20interaction%20with%20CqHIPP34%20and%20CqNAC79&rft.jtitle=Plant%20science%20(Limerick)&rft.au=Sun,%20Wenjun&rft.date=2022-10&rft.volume=323&rft.spage=111406&rft.epage=111406&rft.pages=111406-111406&rft.artnum=111406&rft.issn=0168-9452&rft.eissn=1873-2259&rft_id=info:doi/10.1016/j.plantsci.2022.111406&rft_dat=%3Cproquest_cross%3E2718342768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2699702077&rft_id=info:pmid/&rft_els_id=S016894522200231X&rfr_iscdi=true