Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure

•The GNP/PI bi-layer films are fabricated by a simple and cost-effective approach which have light weight and large deformation.•Driven by the voltage of 10 V, the artificial muscle is able to reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2022-12, Vol.163, p.107164, Article 107164
Hauptverfasser: Yu, Yangtao, Su, Zhiwei, Chen, Wei, Yang, Zhiyue, Yang, Ketong, Meng, Fanzhou, Qiu, Shengyang, Wu, Xulei, Yao, Hai, Li, Jing, Ai, Jintong, Lv, Luying, Dong, Yuzhen, Wang, Huatao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107164
container_title Composites. Part A, Applied science and manufacturing
container_volume 163
creator Yu, Yangtao
Su, Zhiwei
Chen, Wei
Yang, Zhiyue
Yang, Ketong
Meng, Fanzhou
Qiu, Shengyang
Wu, Xulei
Yao, Hai
Li, Jing
Ai, Jintong
Lv, Luying
Dong, Yuzhen
Wang, Huatao
description •The GNP/PI bi-layer films are fabricated by a simple and cost-effective approach which have light weight and large deformation.•Driven by the voltage of 10 V, the artificial muscle is able to reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g.•Based on the GN/PI bi-layers, a walking robot has also been designed to achieve a large displacement under the voltage of about 20.0 V. In recent years, artificial muscle is of great research interest due to its promising application. However, low deformation, complicated fabrication process, and high cost hinder their development. Herein, electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite (GN)/polyimide (PI) complex structure is successfully fabricated by cost-effective process utilizing coefficient of thermal expansion difference between them. GN/PI bi-layer films were further assembled and packaged into multi-unit biaxial bending actuator, which could extend and contract like artificial muscle. The unique characteristics of large deformation, easy control, low cost and simple fabrication process distinguish the GN/PI bi-layer based artificial muscle from others. Driven by the voltage of 10 V, the artificial muscle could reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g. Moreover, a walking robot has also been designed to achieve a large displacement.
doi_str_mv 10.1016/j.compositesa.2022.107164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718332476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X22003463</els_id><sourcerecordid>2718332476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a7e7889fe8055f144b6b0932211f087bfc62e888628ac51c9674d6053d46b69e3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhCMEEqXwDubGJcU_ieMcUVV-JCQuIHGzHGdDXTlxsJ2qfQTeGldFiCOnHY12R7Nfll0TvCCY8NvNQrt-dMFECGpBMaXJrwgvTrIZEZXIS1Hg06RZWeeCle_n2UUIG4wxYzWZZV8rCzp6l8c1-F5Zu0etN1sYUGPUziiLGhhaM3wg5aPpjD5Y_RS0BdSoAC1yA3LewBCT_vBqXKcqaFCDG636Ub8Vb0dn96Y3LaCDZ2GHQvSTjpOHy-ysUzbA1c-cZ2_3q9flY_788vC0vHvONSuLmKsKKiHqDgQuy44URcMbXDNKCemwqJpOcwpCCE6F0iXRNa-KluOStQVveA1snt0cc0fvPicIUfYmaLBWDeCmIGlFBGO0qHharY-r2rsQPHRy9KZXfi8Jlgf8ciP_4JcH_PKIP90uj7eQftka8DLoRElDa3wiLltn_pHyDV1-mII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718332476</pqid></control><display><type>article</type><title>Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Yangtao ; Su, Zhiwei ; Chen, Wei ; Yang, Zhiyue ; Yang, Ketong ; Meng, Fanzhou ; Qiu, Shengyang ; Wu, Xulei ; Yao, Hai ; Li, Jing ; Ai, Jintong ; Lv, Luying ; Dong, Yuzhen ; Wang, Huatao</creator><creatorcontrib>Yu, Yangtao ; Su, Zhiwei ; Chen, Wei ; Yang, Zhiyue ; Yang, Ketong ; Meng, Fanzhou ; Qiu, Shengyang ; Wu, Xulei ; Yao, Hai ; Li, Jing ; Ai, Jintong ; Lv, Luying ; Dong, Yuzhen ; Wang, Huatao</creatorcontrib><description>•The GNP/PI bi-layer films are fabricated by a simple and cost-effective approach which have light weight and large deformation.•Driven by the voltage of 10 V, the artificial muscle is able to reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g.•Based on the GN/PI bi-layers, a walking robot has also been designed to achieve a large displacement under the voltage of about 20.0 V. In recent years, artificial muscle is of great research interest due to its promising application. However, low deformation, complicated fabrication process, and high cost hinder their development. Herein, electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite (GN)/polyimide (PI) complex structure is successfully fabricated by cost-effective process utilizing coefficient of thermal expansion difference between them. GN/PI bi-layer films were further assembled and packaged into multi-unit biaxial bending actuator, which could extend and contract like artificial muscle. The unique characteristics of large deformation, easy control, low cost and simple fabrication process distinguish the GN/PI bi-layer based artificial muscle from others. Driven by the voltage of 10 V, the artificial muscle could reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g. Moreover, a walking robot has also been designed to achieve a large displacement.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2022.107164</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Multifunctional composites ; A. Nanocomposites ; B. Thermal properties ; cost effectiveness ; deformation ; E. Assembly ; electric potential difference ; graphene ; muscles ; nanocomposites ; shrinkage ; thermal expansion</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2022-12, Vol.163, p.107164, Article 107164</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-a7e7889fe8055f144b6b0932211f087bfc62e888628ac51c9674d6053d46b69e3</citedby><cites>FETCH-LOGICAL-c354t-a7e7889fe8055f144b6b0932211f087bfc62e888628ac51c9674d6053d46b69e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359835X22003463$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Yu, Yangtao</creatorcontrib><creatorcontrib>Su, Zhiwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Zhiyue</creatorcontrib><creatorcontrib>Yang, Ketong</creatorcontrib><creatorcontrib>Meng, Fanzhou</creatorcontrib><creatorcontrib>Qiu, Shengyang</creatorcontrib><creatorcontrib>Wu, Xulei</creatorcontrib><creatorcontrib>Yao, Hai</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ai, Jintong</creatorcontrib><creatorcontrib>Lv, Luying</creatorcontrib><creatorcontrib>Dong, Yuzhen</creatorcontrib><creatorcontrib>Wang, Huatao</creatorcontrib><title>Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure</title><title>Composites. Part A, Applied science and manufacturing</title><description>•The GNP/PI bi-layer films are fabricated by a simple and cost-effective approach which have light weight and large deformation.•Driven by the voltage of 10 V, the artificial muscle is able to reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g.•Based on the GN/PI bi-layers, a walking robot has also been designed to achieve a large displacement under the voltage of about 20.0 V. In recent years, artificial muscle is of great research interest due to its promising application. However, low deformation, complicated fabrication process, and high cost hinder their development. Herein, electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite (GN)/polyimide (PI) complex structure is successfully fabricated by cost-effective process utilizing coefficient of thermal expansion difference between them. GN/PI bi-layer films were further assembled and packaged into multi-unit biaxial bending actuator, which could extend and contract like artificial muscle. The unique characteristics of large deformation, easy control, low cost and simple fabrication process distinguish the GN/PI bi-layer based artificial muscle from others. Driven by the voltage of 10 V, the artificial muscle could reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g. Moreover, a walking robot has also been designed to achieve a large displacement.</description><subject>A. Multifunctional composites</subject><subject>A. Nanocomposites</subject><subject>B. Thermal properties</subject><subject>cost effectiveness</subject><subject>deformation</subject><subject>E. Assembly</subject><subject>electric potential difference</subject><subject>graphene</subject><subject>muscles</subject><subject>nanocomposites</subject><subject>shrinkage</subject><subject>thermal expansion</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhCMEEqXwDubGJcU_ieMcUVV-JCQuIHGzHGdDXTlxsJ2qfQTeGldFiCOnHY12R7Nfll0TvCCY8NvNQrt-dMFECGpBMaXJrwgvTrIZEZXIS1Hg06RZWeeCle_n2UUIG4wxYzWZZV8rCzp6l8c1-F5Zu0etN1sYUGPUziiLGhhaM3wg5aPpjD5Y_RS0BdSoAC1yA3LewBCT_vBqXKcqaFCDG636Ub8Vb0dn96Y3LaCDZ2GHQvSTjpOHy-ysUzbA1c-cZ2_3q9flY_788vC0vHvONSuLmKsKKiHqDgQuy44URcMbXDNKCemwqJpOcwpCCE6F0iXRNa-KluOStQVveA1snt0cc0fvPicIUfYmaLBWDeCmIGlFBGO0qHharY-r2rsQPHRy9KZXfi8Jlgf8ciP_4JcH_PKIP90uj7eQftka8DLoRElDa3wiLltn_pHyDV1-mII</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Yu, Yangtao</creator><creator>Su, Zhiwei</creator><creator>Chen, Wei</creator><creator>Yang, Zhiyue</creator><creator>Yang, Ketong</creator><creator>Meng, Fanzhou</creator><creator>Qiu, Shengyang</creator><creator>Wu, Xulei</creator><creator>Yao, Hai</creator><creator>Li, Jing</creator><creator>Ai, Jintong</creator><creator>Lv, Luying</creator><creator>Dong, Yuzhen</creator><creator>Wang, Huatao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202212</creationdate><title>Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure</title><author>Yu, Yangtao ; Su, Zhiwei ; Chen, Wei ; Yang, Zhiyue ; Yang, Ketong ; Meng, Fanzhou ; Qiu, Shengyang ; Wu, Xulei ; Yao, Hai ; Li, Jing ; Ai, Jintong ; Lv, Luying ; Dong, Yuzhen ; Wang, Huatao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a7e7889fe8055f144b6b0932211f087bfc62e888628ac51c9674d6053d46b69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A. Multifunctional composites</topic><topic>A. Nanocomposites</topic><topic>B. Thermal properties</topic><topic>cost effectiveness</topic><topic>deformation</topic><topic>E. Assembly</topic><topic>electric potential difference</topic><topic>graphene</topic><topic>muscles</topic><topic>nanocomposites</topic><topic>shrinkage</topic><topic>thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yangtao</creatorcontrib><creatorcontrib>Su, Zhiwei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Zhiyue</creatorcontrib><creatorcontrib>Yang, Ketong</creatorcontrib><creatorcontrib>Meng, Fanzhou</creatorcontrib><creatorcontrib>Qiu, Shengyang</creatorcontrib><creatorcontrib>Wu, Xulei</creatorcontrib><creatorcontrib>Yao, Hai</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Ai, Jintong</creatorcontrib><creatorcontrib>Lv, Luying</creatorcontrib><creatorcontrib>Dong, Yuzhen</creatorcontrib><creatorcontrib>Wang, Huatao</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yangtao</au><au>Su, Zhiwei</au><au>Chen, Wei</au><au>Yang, Zhiyue</au><au>Yang, Ketong</au><au>Meng, Fanzhou</au><au>Qiu, Shengyang</au><au>Wu, Xulei</au><au>Yao, Hai</au><au>Li, Jing</au><au>Ai, Jintong</au><au>Lv, Luying</au><au>Dong, Yuzhen</au><au>Wang, Huatao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2022-12</date><risdate>2022</risdate><volume>163</volume><spage>107164</spage><pages>107164-</pages><artnum>107164</artnum><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>•The GNP/PI bi-layer films are fabricated by a simple and cost-effective approach which have light weight and large deformation.•Driven by the voltage of 10 V, the artificial muscle is able to reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g.•Based on the GN/PI bi-layers, a walking robot has also been designed to achieve a large displacement under the voltage of about 20.0 V. In recent years, artificial muscle is of great research interest due to its promising application. However, low deformation, complicated fabrication process, and high cost hinder their development. Herein, electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite (GN)/polyimide (PI) complex structure is successfully fabricated by cost-effective process utilizing coefficient of thermal expansion difference between them. GN/PI bi-layer films were further assembled and packaged into multi-unit biaxial bending actuator, which could extend and contract like artificial muscle. The unique characteristics of large deformation, easy control, low cost and simple fabrication process distinguish the GN/PI bi-layer based artificial muscle from others. Driven by the voltage of 10 V, the artificial muscle could reversibly reach a shrinkage rate of 11% and a maximum lifting height of 2.5 cm with the object weight of 5.0 g. Moreover, a walking robot has also been designed to achieve a large displacement.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2022.107164</doi></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2022-12, Vol.163, p.107164, Article 107164
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_2718332476
source Elsevier ScienceDirect Journals
subjects A. Multifunctional composites
A. Nanocomposites
B. Thermal properties
cost effectiveness
deformation
E. Assembly
electric potential difference
graphene
muscles
nanocomposites
shrinkage
thermal expansion
title Electro-thermally driven biaxial bending artificial muscle based on oriented graphite nanoplate nanocomposite/polyimide complex structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electro-thermally%20driven%20biaxial%20bending%20artificial%20muscle%20based%20on%20oriented%20graphite%20nanoplate%20nanocomposite/polyimide%20complex%20structure&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Yu,%20Yangtao&rft.date=2022-12&rft.volume=163&rft.spage=107164&rft.pages=107164-&rft.artnum=107164&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2022.107164&rft_dat=%3Cproquest_cross%3E2718332476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718332476&rft_id=info:pmid/&rft_els_id=S1359835X22003463&rfr_iscdi=true