Reduction of multiple reaction monitoring protein target list using correlation analysis
High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole...
Gespeichert in:
Veröffentlicht in: | Journal of dairy science 2022-09, Vol.105 (9), p.7216-7229 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7229 |
---|---|
container_issue | 9 |
container_start_page | 7216 |
container_title | Journal of dairy science |
container_volume | 105 |
creator | Ebhardt, Holger A. Ponchon, Pierre Theodosiadis, Konstantinos Fuerer, Christophe Courtet-Compondu, Marie-Claude O'Regan, Jonathan Affolter, Michael Joubran, Yousef |
description | High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies. |
doi_str_mv | 10.3168/jds.2021-21647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718276888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718276888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</originalsourceid><addsrcrecordid>eNotkMtrwzAMxn3YYF23684-7pLOj8R2jqPsBYXB2GA34zhycXHiznYO_e-XPtBBSPr0If0QeqBkxalQT7s-rxhhtGJU1PIKLQhhrCKcsBt0m_NuLikjzQL9fkE_2eLjiKPDwxSK3wfACcy5OcTRl5j8uMX7FAv4EReTtlBw8LngKR8nNqYEwZwWzGjCIft8h66dCRnuL3mJfl5fvtfv1ebz7WP9vKksq1mppHVWUQqGdMSRRggD3M0BpDeNVA0QRtq2ddKxvpOCd2DbuueuFp1w8xd8iR7PvvN5fxPkogefLYRgRohT1kxSxaRQSs3S1VlqU8w5gdP75AeTDpoSfcSmZ2z6iE2fsPF_O9tk4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718276888</pqid></control><display><type>article</type><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</creator><creatorcontrib>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</creatorcontrib><description>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</description><identifier>ISSN: 0022-0302</identifier><identifier>DOI: 10.3168/jds.2021-21647</identifier><language>eng</language><subject>cattle ; cream ; data collection ; mass spectrometry ; milk fat ; peptides ; proteomics ; stable isotopes ; variance ; whey</subject><ispartof>Journal of dairy science, 2022-09, Vol.105 (9), p.7216-7229</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</citedby><cites>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</cites><orcidid>0000-0003-1717-6718 ; 0000-0003-1568-4516 ; 0000-0002-6887-6645 ; 0000-0003-0798-8720 ; 0000-0001-9019-8388 ; 0000-0001-7320-9516 ; 0000-0003-3779-3502 ; 0000-0002-3189-6079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Ebhardt, Holger A.</creatorcontrib><creatorcontrib>Ponchon, Pierre</creatorcontrib><creatorcontrib>Theodosiadis, Konstantinos</creatorcontrib><creatorcontrib>Fuerer, Christophe</creatorcontrib><creatorcontrib>Courtet-Compondu, Marie-Claude</creatorcontrib><creatorcontrib>O'Regan, Jonathan</creatorcontrib><creatorcontrib>Affolter, Michael</creatorcontrib><creatorcontrib>Joubran, Yousef</creatorcontrib><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><title>Journal of dairy science</title><description>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</description><subject>cattle</subject><subject>cream</subject><subject>data collection</subject><subject>mass spectrometry</subject><subject>milk fat</subject><subject>peptides</subject><subject>proteomics</subject><subject>stable isotopes</subject><subject>variance</subject><subject>whey</subject><issn>0022-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtrwzAMxn3YYF23684-7pLOj8R2jqPsBYXB2GA34zhycXHiznYO_e-XPtBBSPr0If0QeqBkxalQT7s-rxhhtGJU1PIKLQhhrCKcsBt0m_NuLikjzQL9fkE_2eLjiKPDwxSK3wfACcy5OcTRl5j8uMX7FAv4EReTtlBw8LngKR8nNqYEwZwWzGjCIft8h66dCRnuL3mJfl5fvtfv1ebz7WP9vKksq1mppHVWUQqGdMSRRggD3M0BpDeNVA0QRtq2ddKxvpOCd2DbuueuFp1w8xd8iR7PvvN5fxPkogefLYRgRohT1kxSxaRQSs3S1VlqU8w5gdP75AeTDpoSfcSmZ2z6iE2fsPF_O9tk4Q</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Ebhardt, Holger A.</creator><creator>Ponchon, Pierre</creator><creator>Theodosiadis, Konstantinos</creator><creator>Fuerer, Christophe</creator><creator>Courtet-Compondu, Marie-Claude</creator><creator>O'Regan, Jonathan</creator><creator>Affolter, Michael</creator><creator>Joubran, Yousef</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1717-6718</orcidid><orcidid>https://orcid.org/0000-0003-1568-4516</orcidid><orcidid>https://orcid.org/0000-0002-6887-6645</orcidid><orcidid>https://orcid.org/0000-0003-0798-8720</orcidid><orcidid>https://orcid.org/0000-0001-9019-8388</orcidid><orcidid>https://orcid.org/0000-0001-7320-9516</orcidid><orcidid>https://orcid.org/0000-0003-3779-3502</orcidid><orcidid>https://orcid.org/0000-0002-3189-6079</orcidid></search><sort><creationdate>202209</creationdate><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><author>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cattle</topic><topic>cream</topic><topic>data collection</topic><topic>mass spectrometry</topic><topic>milk fat</topic><topic>peptides</topic><topic>proteomics</topic><topic>stable isotopes</topic><topic>variance</topic><topic>whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebhardt, Holger A.</creatorcontrib><creatorcontrib>Ponchon, Pierre</creatorcontrib><creatorcontrib>Theodosiadis, Konstantinos</creatorcontrib><creatorcontrib>Fuerer, Christophe</creatorcontrib><creatorcontrib>Courtet-Compondu, Marie-Claude</creatorcontrib><creatorcontrib>O'Regan, Jonathan</creatorcontrib><creatorcontrib>Affolter, Michael</creatorcontrib><creatorcontrib>Joubran, Yousef</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of dairy science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebhardt, Holger A.</au><au>Ponchon, Pierre</au><au>Theodosiadis, Konstantinos</au><au>Fuerer, Christophe</au><au>Courtet-Compondu, Marie-Claude</au><au>O'Regan, Jonathan</au><au>Affolter, Michael</au><au>Joubran, Yousef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of multiple reaction monitoring protein target list using correlation analysis</atitle><jtitle>Journal of dairy science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>105</volume><issue>9</issue><spage>7216</spage><epage>7229</epage><pages>7216-7229</pages><issn>0022-0302</issn><abstract>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</abstract><doi>10.3168/jds.2021-21647</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1717-6718</orcidid><orcidid>https://orcid.org/0000-0003-1568-4516</orcidid><orcidid>https://orcid.org/0000-0002-6887-6645</orcidid><orcidid>https://orcid.org/0000-0003-0798-8720</orcidid><orcidid>https://orcid.org/0000-0001-9019-8388</orcidid><orcidid>https://orcid.org/0000-0001-7320-9516</orcidid><orcidid>https://orcid.org/0000-0003-3779-3502</orcidid><orcidid>https://orcid.org/0000-0002-3189-6079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0302 |
ispartof | Journal of dairy science, 2022-09, Vol.105 (9), p.7216-7229 |
issn | 0022-0302 |
language | eng |
recordid | cdi_proquest_miscellaneous_2718276888 |
source | DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cattle cream data collection mass spectrometry milk fat peptides proteomics stable isotopes variance whey |
title | Reduction of multiple reaction monitoring protein target list using correlation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20multiple%20reaction%20monitoring%20protein%20target%20list%20using%20correlation%20analysis&rft.jtitle=Journal%20of%20dairy%20science&rft.au=Ebhardt,%20Holger%20A.&rft.date=2022-09&rft.volume=105&rft.issue=9&rft.spage=7216&rft.epage=7229&rft.pages=7216-7229&rft.issn=0022-0302&rft_id=info:doi/10.3168/jds.2021-21647&rft_dat=%3Cproquest_cross%3E2718276888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718276888&rft_id=info:pmid/&rfr_iscdi=true |