Reduction of multiple reaction monitoring protein target list using correlation analysis

High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2022-09, Vol.105 (9), p.7216-7229
Hauptverfasser: Ebhardt, Holger A., Ponchon, Pierre, Theodosiadis, Konstantinos, Fuerer, Christophe, Courtet-Compondu, Marie-Claude, O'Regan, Jonathan, Affolter, Michael, Joubran, Yousef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7229
container_issue 9
container_start_page 7216
container_title Journal of dairy science
container_volume 105
creator Ebhardt, Holger A.
Ponchon, Pierre
Theodosiadis, Konstantinos
Fuerer, Christophe
Courtet-Compondu, Marie-Claude
O'Regan, Jonathan
Affolter, Michael
Joubran, Yousef
description High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.
doi_str_mv 10.3168/jds.2021-21647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2718276888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718276888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</originalsourceid><addsrcrecordid>eNotkMtrwzAMxn3YYF23684-7pLOj8R2jqPsBYXB2GA34zhycXHiznYO_e-XPtBBSPr0If0QeqBkxalQT7s-rxhhtGJU1PIKLQhhrCKcsBt0m_NuLikjzQL9fkE_2eLjiKPDwxSK3wfACcy5OcTRl5j8uMX7FAv4EReTtlBw8LngKR8nNqYEwZwWzGjCIft8h66dCRnuL3mJfl5fvtfv1ebz7WP9vKksq1mppHVWUQqGdMSRRggD3M0BpDeNVA0QRtq2ddKxvpOCd2DbuueuFp1w8xd8iR7PvvN5fxPkogefLYRgRohT1kxSxaRQSs3S1VlqU8w5gdP75AeTDpoSfcSmZ2z6iE2fsPF_O9tk4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718276888</pqid></control><display><type>article</type><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</creator><creatorcontrib>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</creatorcontrib><description>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</description><identifier>ISSN: 0022-0302</identifier><identifier>DOI: 10.3168/jds.2021-21647</identifier><language>eng</language><subject>cattle ; cream ; data collection ; mass spectrometry ; milk fat ; peptides ; proteomics ; stable isotopes ; variance ; whey</subject><ispartof>Journal of dairy science, 2022-09, Vol.105 (9), p.7216-7229</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</citedby><cites>FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</cites><orcidid>0000-0003-1717-6718 ; 0000-0003-1568-4516 ; 0000-0002-6887-6645 ; 0000-0003-0798-8720 ; 0000-0001-9019-8388 ; 0000-0001-7320-9516 ; 0000-0003-3779-3502 ; 0000-0002-3189-6079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Ebhardt, Holger A.</creatorcontrib><creatorcontrib>Ponchon, Pierre</creatorcontrib><creatorcontrib>Theodosiadis, Konstantinos</creatorcontrib><creatorcontrib>Fuerer, Christophe</creatorcontrib><creatorcontrib>Courtet-Compondu, Marie-Claude</creatorcontrib><creatorcontrib>O'Regan, Jonathan</creatorcontrib><creatorcontrib>Affolter, Michael</creatorcontrib><creatorcontrib>Joubran, Yousef</creatorcontrib><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><title>Journal of dairy science</title><description>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</description><subject>cattle</subject><subject>cream</subject><subject>data collection</subject><subject>mass spectrometry</subject><subject>milk fat</subject><subject>peptides</subject><subject>proteomics</subject><subject>stable isotopes</subject><subject>variance</subject><subject>whey</subject><issn>0022-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMtrwzAMxn3YYF23684-7pLOj8R2jqPsBYXB2GA34zhycXHiznYO_e-XPtBBSPr0If0QeqBkxalQT7s-rxhhtGJU1PIKLQhhrCKcsBt0m_NuLikjzQL9fkE_2eLjiKPDwxSK3wfACcy5OcTRl5j8uMX7FAv4EReTtlBw8LngKR8nNqYEwZwWzGjCIft8h66dCRnuL3mJfl5fvtfv1ebz7WP9vKksq1mppHVWUQqGdMSRRggD3M0BpDeNVA0QRtq2ddKxvpOCd2DbuueuFp1w8xd8iR7PvvN5fxPkogefLYRgRohT1kxSxaRQSs3S1VlqU8w5gdP75AeTDpoSfcSmZ2z6iE2fsPF_O9tk4Q</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Ebhardt, Holger A.</creator><creator>Ponchon, Pierre</creator><creator>Theodosiadis, Konstantinos</creator><creator>Fuerer, Christophe</creator><creator>Courtet-Compondu, Marie-Claude</creator><creator>O'Regan, Jonathan</creator><creator>Affolter, Michael</creator><creator>Joubran, Yousef</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1717-6718</orcidid><orcidid>https://orcid.org/0000-0003-1568-4516</orcidid><orcidid>https://orcid.org/0000-0002-6887-6645</orcidid><orcidid>https://orcid.org/0000-0003-0798-8720</orcidid><orcidid>https://orcid.org/0000-0001-9019-8388</orcidid><orcidid>https://orcid.org/0000-0001-7320-9516</orcidid><orcidid>https://orcid.org/0000-0003-3779-3502</orcidid><orcidid>https://orcid.org/0000-0002-3189-6079</orcidid></search><sort><creationdate>202209</creationdate><title>Reduction of multiple reaction monitoring protein target list using correlation analysis</title><author>Ebhardt, Holger A. ; Ponchon, Pierre ; Theodosiadis, Konstantinos ; Fuerer, Christophe ; Courtet-Compondu, Marie-Claude ; O'Regan, Jonathan ; Affolter, Michael ; Joubran, Yousef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-7cfc811ea0b0f0566ae3f3f3e0da5785e020999f7f2db763bec94d3f46b6f0023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cattle</topic><topic>cream</topic><topic>data collection</topic><topic>mass spectrometry</topic><topic>milk fat</topic><topic>peptides</topic><topic>proteomics</topic><topic>stable isotopes</topic><topic>variance</topic><topic>whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebhardt, Holger A.</creatorcontrib><creatorcontrib>Ponchon, Pierre</creatorcontrib><creatorcontrib>Theodosiadis, Konstantinos</creatorcontrib><creatorcontrib>Fuerer, Christophe</creatorcontrib><creatorcontrib>Courtet-Compondu, Marie-Claude</creatorcontrib><creatorcontrib>O'Regan, Jonathan</creatorcontrib><creatorcontrib>Affolter, Michael</creatorcontrib><creatorcontrib>Joubran, Yousef</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of dairy science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebhardt, Holger A.</au><au>Ponchon, Pierre</au><au>Theodosiadis, Konstantinos</au><au>Fuerer, Christophe</au><au>Courtet-Compondu, Marie-Claude</au><au>O'Regan, Jonathan</au><au>Affolter, Michael</au><au>Joubran, Yousef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of multiple reaction monitoring protein target list using correlation analysis</atitle><jtitle>Journal of dairy science</jtitle><date>2022-09</date><risdate>2022</risdate><volume>105</volume><issue>9</issue><spage>7216</spage><epage>7229</epage><pages>7216-7229</pages><issn>0022-0302</issn><abstract>High mass resolution mass spectrometry provides hundreds to thousands of protein identifications per sample, and quantification is typically performed using label-free quantification. However, the gold standard of quantitative proteomics is multiple reaction monitoring (MRM) using triple quadrupole mass spectrometers and stable isotope reference peptides. This raises the question how to reduce a large data set to a small one without losing essential information. Here we present the reduction of such a data set using correlation analysis of bovine dairy ingredients and derived products. We were able to explain the variance in the proteomics data set using only 9 proteins across all major dairy protein classes: caseins, whey, and milk fat globule membrane proteins. We term this method Trinity-MRM. The reproducibility of the protein extraction and Trinity-MRM methods was shown to be below 5% in independent experiments (multi-day single-user and single-day multi-user) using double cream. Further application of this reductionist approach might include screening of large sample cohorts for biologically interesting samples before analysis by high-resolution mass spectrometry or other omics methodologies.</abstract><doi>10.3168/jds.2021-21647</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1717-6718</orcidid><orcidid>https://orcid.org/0000-0003-1568-4516</orcidid><orcidid>https://orcid.org/0000-0002-6887-6645</orcidid><orcidid>https://orcid.org/0000-0003-0798-8720</orcidid><orcidid>https://orcid.org/0000-0001-9019-8388</orcidid><orcidid>https://orcid.org/0000-0001-7320-9516</orcidid><orcidid>https://orcid.org/0000-0003-3779-3502</orcidid><orcidid>https://orcid.org/0000-0002-3189-6079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0302
ispartof Journal of dairy science, 2022-09, Vol.105 (9), p.7216-7229
issn 0022-0302
language eng
recordid cdi_proquest_miscellaneous_2718276888
source DOAJ Directory of Open Access Journals; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cattle
cream
data collection
mass spectrometry
milk fat
peptides
proteomics
stable isotopes
variance
whey
title Reduction of multiple reaction monitoring protein target list using correlation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20multiple%20reaction%20monitoring%20protein%20target%20list%20using%20correlation%20analysis&rft.jtitle=Journal%20of%20dairy%20science&rft.au=Ebhardt,%20Holger%20A.&rft.date=2022-09&rft.volume=105&rft.issue=9&rft.spage=7216&rft.epage=7229&rft.pages=7216-7229&rft.issn=0022-0302&rft_id=info:doi/10.3168/jds.2021-21647&rft_dat=%3Cproquest_cross%3E2718276888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718276888&rft_id=info:pmid/&rfr_iscdi=true