The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films
A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a column...
Gespeichert in:
Veröffentlicht in: | International journal of fracture 1999, Vol.95 (1-4), p.19-39 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1-4 |
container_start_page | 19 |
container_title | International journal of fracture |
container_volume | 95 |
creator | BALLARINI, R MULLEN, R. L HEUER, A. H |
description | A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-tip region is subjected to displacement boundary conditions associated with a macroscopic (far field or nominal) Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate, normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip. |
doi_str_mv | 10.1023/A:1018679729577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27180499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27180499</sourcerecordid><originalsourceid>FETCH-LOGICAL-g211t-a6180f303c9ee6daf360f8fd076bf04d5feb13d4b28d2117902395611af98c2a3</originalsourceid><addsrcrecordid>eNpdzztPwzAQB3ALgUQpzKyWQGwBP5I4ZqsqXlIlljJHrnNuXVy72O4QPj2WKAvD6Zbf_x4IXVNyTwnjD7NHSmjXCimYbIQ4QRPaCF6xVvBTNCFctJWsmTxHFyltCSFSdPUE9csNYDAGdE44GLyBDDGswYPNI1Z-KGVTyDHsRxw8zoUn-_2XwdZjHZX-hAHvgxt1HFNWzlkP2Fi3S5fozCiX4OrYp-jj-Wk5f60W7y9v89miWjNKc6Va2hHDCdcSoB2U4S0xnRmIaFeG1ENjYEX5UK9YN5SAkOVj2bSUKiM7zRSforvfufsYvg6Qcr-zSYNzykM4pJ6JsqCWssCbf3AbDtGX23rGGtk1TU1FUbdHpZJWzkTltU39PtqdimNPpaRCCP4D8jdw7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259855417</pqid></control><display><type>article</type><title>The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films</title><source>SpringerLink Journals - AutoHoldings</source><creator>BALLARINI, R ; MULLEN, R. L ; HEUER, A. H</creator><creatorcontrib>BALLARINI, R ; MULLEN, R. L ; HEUER, A. H</creatorcontrib><description>A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-tip region is subjected to displacement boundary conditions associated with a macroscopic (far field or nominal) Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate, normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1023/A:1018679729577</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Anisotropy ; Boundary conditions ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Crack initiation ; Crack tips ; Crystal structure ; Crystallinity ; Deformation ; Elastic properties ; Energy release rate ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Finite element method ; Fracture mechanics (crack, fatigue, damage...) ; Fracture mechanics, fatigue and cracks ; Fundamental areas of phenomenology (including applications) ; Grains ; Heterogeneity ; Mechanical and acoustical properties ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Parameters ; Physical properties of thin films, nonelectronic ; Physics ; Polycrystals ; Size effects ; Solid mechanics ; Standard deviation ; Stress intensity factors ; Structural and continuum mechanics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>International journal of fracture, 1999, Vol.95 (1-4), p.19-39</ispartof><rights>1999 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (1999). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,4036,4037,23911,23912,25120,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1991777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BALLARINI, R</creatorcontrib><creatorcontrib>MULLEN, R. L</creatorcontrib><creatorcontrib>HEUER, A. H</creatorcontrib><title>The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films</title><title>International journal of fracture</title><description>A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-tip region is subjected to displacement boundary conditions associated with a macroscopic (far field or nominal) Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate, normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip.</description><subject>Anisotropy</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Crack initiation</subject><subject>Crack tips</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Energy release rate</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Finite element method</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture mechanics, fatigue and cracks</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grains</subject><subject>Heterogeneity</subject><subject>Mechanical and acoustical properties</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Parameters</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Polycrystals</subject><subject>Size effects</subject><subject>Solid mechanics</subject><subject>Standard deviation</subject><subject>Stress intensity factors</subject><subject>Structural and continuum mechanics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdzztPwzAQB3ALgUQpzKyWQGwBP5I4ZqsqXlIlljJHrnNuXVy72O4QPj2WKAvD6Zbf_x4IXVNyTwnjD7NHSmjXCimYbIQ4QRPaCF6xVvBTNCFctJWsmTxHFyltCSFSdPUE9csNYDAGdE44GLyBDDGswYPNI1Z-KGVTyDHsRxw8zoUn-_2XwdZjHZX-hAHvgxt1HFNWzlkP2Fi3S5fozCiX4OrYp-jj-Wk5f60W7y9v89miWjNKc6Va2hHDCdcSoB2U4S0xnRmIaFeG1ENjYEX5UK9YN5SAkOVj2bSUKiM7zRSforvfufsYvg6Qcr-zSYNzykM4pJ6JsqCWssCbf3AbDtGX23rGGtk1TU1FUbdHpZJWzkTltU39PtqdimNPpaRCCP4D8jdw7g</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>BALLARINI, R</creator><creator>MULLEN, R. L</creator><creator>HEUER, A. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>1999</creationdate><title>The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films</title><author>BALLARINI, R ; MULLEN, R. L ; HEUER, A. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g211t-a6180f303c9ee6daf360f8fd076bf04d5feb13d4b28d2117902395611af98c2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Anisotropy</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Crack initiation</topic><topic>Crack tips</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Energy release rate</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Finite element method</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture mechanics, fatigue and cracks</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grains</topic><topic>Heterogeneity</topic><topic>Mechanical and acoustical properties</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Parameters</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Polycrystals</topic><topic>Size effects</topic><topic>Solid mechanics</topic><topic>Standard deviation</topic><topic>Stress intensity factors</topic><topic>Structural and continuum mechanics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALLARINI, R</creatorcontrib><creatorcontrib>MULLEN, R. L</creatorcontrib><creatorcontrib>HEUER, A. H</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALLARINI, R</au><au>MULLEN, R. L</au><au>HEUER, A. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films</atitle><jtitle>International journal of fracture</jtitle><date>1999</date><risdate>1999</risdate><volume>95</volume><issue>1-4</issue><spage>19</spage><epage>39</epage><pages>19-39</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>A model is developed for quantifying the size effect due to heterogeneity and anisotropy in polycrystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the microscopic (local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-tip region is subjected to displacement boundary conditions associated with a macroscopic (far field or nominal) Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate, normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1018679729577</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 1999, Vol.95 (1-4), p.19-39 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_proquest_miscellaneous_27180499 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Boundary conditions Computer simulation Condensed matter: structure, mechanical and thermal properties Crack initiation Crack tips Crystal structure Crystallinity Deformation Elastic properties Energy release rate Exact sciences and technology Fatigue, brittleness, fracture, and cracks Finite element method Fracture mechanics (crack, fatigue, damage...) Fracture mechanics, fatigue and cracks Fundamental areas of phenomenology (including applications) Grains Heterogeneity Mechanical and acoustical properties Mechanical and acoustical properties of condensed matter Mechanical properties of solids Parameters Physical properties of thin films, nonelectronic Physics Polycrystals Size effects Solid mechanics Standard deviation Stress intensity factors Structural and continuum mechanics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20heterogeneity%20and%20anisotropy%20on%20the%20size%20effect%20in%20cracked%20polycrystalline%20films&rft.jtitle=International%20journal%20of%20fracture&rft.au=BALLARINI,%20R&rft.date=1999&rft.volume=95&rft.issue=1-4&rft.spage=19&rft.epage=39&rft.pages=19-39&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1023/A:1018679729577&rft_dat=%3Cproquest_pasca%3E27180499%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259855417&rft_id=info:pmid/&rfr_iscdi=true |