Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance

Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (39), p.44909-44921
Hauptverfasser: Zhang, Gaotian, Ke, Xi, Liu, Xiao, Liao, Haijun, Wang, Weizhe, Yu, He, Wang, Kunqiang, Yang, Shuhui, Tu, Chen, Gu, Huaimin, Luo, Dongxiang, Huang, Le, Zhang, Menglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44921
container_issue 39
container_start_page 44909
container_title ACS applied materials & interfaces
container_volume 14
creator Zhang, Gaotian
Ke, Xi
Liu, Xiao
Liao, Haijun
Wang, Weizhe
Yu, He
Wang, Kunqiang
Yang, Shuhui
Tu, Chen
Gu, Huaimin
Luo, Dongxiang
Huang, Le
Zhang, Menglong
description Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large lattice mismatch accompanied by the interfacial defects and high density of gap states, acting as high energy barriers for charge migration. In this work, we report the atomic engineering of CsPbBr3/PbSe heterogeneous interfaces and conversion from incoherent features to semicoherent characters via methyl acetate (MeOAc) purification of CsPbBr3 quantum dots (QDs) before composited with two-dimensional (2D)-PbSe, which is confirmed by high-resolution transmission electron microscopy. The photocatalytic performances and theoretical calculations indicate that semicoherent interfaces are favorable for improving the activity and reactivity of the heterostructure, triggering 3 times enhanced photocatalytic CO2 reduction rate with 91% selectivity and satisfactory stability. This study proposes a facile method for photocatalytic heterojunctions to transform incoherent interfaces to photocatalytically beneficial semicoherent boundaries, accompanying with a systematic analysis of the consequent chemical dynamics to demonstrate the mechanism of the semicoherent interface for supporting photocatalysis. The understandings gained from this work are valuable for rational interfacial lattice engineering of heterogeneous photocatalysts for efficient solar fuel production.
doi_str_mv 10.1021/acsami.2c09711
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717690858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717690858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-9cbc3f7499862c4c179ca73e84a842098f4008feea6710f23d0a5803f4f389c03</originalsourceid><addsrcrecordid>eNo9kM1OAjEURidGExHduu7SmAz0b2bapQIqCQlj0PWklFsoYVpsO4_gezsGdHXv4uTky8mye4JHBFMyVjqq1o6oxrIi5CIbEMl5LmhBL_9_zq-zmxj3GJeM4mKQfc9dgmCUtuqAZm5rHUCwbou8QStorfY7COAS-uMAqYTqLlhjYYMmsV4_B4beO-VS16KpT3FMp3m9XgEyPqDlMdm2V0-WFNU7n3yATaeT9Q7Vvc-HVjkNt9mVUYcId-c7zD5fZh-Tt3yxfJ1Pnha5IgVLudRrzUzFpRQl1VyTSmpVMRBcCU6xFIZjLAyAKiuCDWUbrAqBmeGGCakxG2YPJ-8x-K8OYmpaGzUcDsqB72JDK1KVEotC9OjjCe2zNnvfBdcPawhufls3p9bNuTX7AW6yc5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717690858</pqid></control><display><type>article</type><title>Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance</title><source>ACS Publications</source><creator>Zhang, Gaotian ; Ke, Xi ; Liu, Xiao ; Liao, Haijun ; Wang, Weizhe ; Yu, He ; Wang, Kunqiang ; Yang, Shuhui ; Tu, Chen ; Gu, Huaimin ; Luo, Dongxiang ; Huang, Le ; Zhang, Menglong</creator><creatorcontrib>Zhang, Gaotian ; Ke, Xi ; Liu, Xiao ; Liao, Haijun ; Wang, Weizhe ; Yu, He ; Wang, Kunqiang ; Yang, Shuhui ; Tu, Chen ; Gu, Huaimin ; Luo, Dongxiang ; Huang, Le ; Zhang, Menglong</creatorcontrib><description>Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large lattice mismatch accompanied by the interfacial defects and high density of gap states, acting as high energy barriers for charge migration. In this work, we report the atomic engineering of CsPbBr3/PbSe heterogeneous interfaces and conversion from incoherent features to semicoherent characters via methyl acetate (MeOAc) purification of CsPbBr3 quantum dots (QDs) before composited with two-dimensional (2D)-PbSe, which is confirmed by high-resolution transmission electron microscopy. The photocatalytic performances and theoretical calculations indicate that semicoherent interfaces are favorable for improving the activity and reactivity of the heterostructure, triggering 3 times enhanced photocatalytic CO2 reduction rate with 91% selectivity and satisfactory stability. This study proposes a facile method for photocatalytic heterojunctions to transform incoherent interfaces to photocatalytically beneficial semicoherent boundaries, accompanying with a systematic analysis of the consequent chemical dynamics to demonstrate the mechanism of the semicoherent interface for supporting photocatalysis. The understandings gained from this work are valuable for rational interfacial lattice engineering of heterogeneous photocatalysts for efficient solar fuel production.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c09711</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-10, Vol.14 (39), p.44909-44921</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0011-1379 ; 0000-0003-3189-2171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c09711$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c09711$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Gaotian</creatorcontrib><creatorcontrib>Ke, Xi</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Wang, Weizhe</creatorcontrib><creatorcontrib>Yu, He</creatorcontrib><creatorcontrib>Wang, Kunqiang</creatorcontrib><creatorcontrib>Yang, Shuhui</creatorcontrib><creatorcontrib>Tu, Chen</creatorcontrib><creatorcontrib>Gu, Huaimin</creatorcontrib><creatorcontrib>Luo, Dongxiang</creatorcontrib><creatorcontrib>Huang, Le</creatorcontrib><creatorcontrib>Zhang, Menglong</creatorcontrib><title>Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large lattice mismatch accompanied by the interfacial defects and high density of gap states, acting as high energy barriers for charge migration. In this work, we report the atomic engineering of CsPbBr3/PbSe heterogeneous interfaces and conversion from incoherent features to semicoherent characters via methyl acetate (MeOAc) purification of CsPbBr3 quantum dots (QDs) before composited with two-dimensional (2D)-PbSe, which is confirmed by high-resolution transmission electron microscopy. The photocatalytic performances and theoretical calculations indicate that semicoherent interfaces are favorable for improving the activity and reactivity of the heterostructure, triggering 3 times enhanced photocatalytic CO2 reduction rate with 91% selectivity and satisfactory stability. This study proposes a facile method for photocatalytic heterojunctions to transform incoherent interfaces to photocatalytically beneficial semicoherent boundaries, accompanying with a systematic analysis of the consequent chemical dynamics to demonstrate the mechanism of the semicoherent interface for supporting photocatalysis. The understandings gained from this work are valuable for rational interfacial lattice engineering of heterogeneous photocatalysts for efficient solar fuel production.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEURidGExHduu7SmAz0b2bapQIqCQlj0PWklFsoYVpsO4_gezsGdHXv4uTky8mye4JHBFMyVjqq1o6oxrIi5CIbEMl5LmhBL_9_zq-zmxj3GJeM4mKQfc9dgmCUtuqAZm5rHUCwbou8QStorfY7COAS-uMAqYTqLlhjYYMmsV4_B4beO-VS16KpT3FMp3m9XgEyPqDlMdm2V0-WFNU7n3yATaeT9Q7Vvc-HVjkNt9mVUYcId-c7zD5fZh-Tt3yxfJ1Pnha5IgVLudRrzUzFpRQl1VyTSmpVMRBcCU6xFIZjLAyAKiuCDWUbrAqBmeGGCakxG2YPJ-8x-K8OYmpaGzUcDsqB72JDK1KVEotC9OjjCe2zNnvfBdcPawhufls3p9bNuTX7AW6yc5Q</recordid><startdate>20221005</startdate><enddate>20221005</enddate><creator>Zhang, Gaotian</creator><creator>Ke, Xi</creator><creator>Liu, Xiao</creator><creator>Liao, Haijun</creator><creator>Wang, Weizhe</creator><creator>Yu, He</creator><creator>Wang, Kunqiang</creator><creator>Yang, Shuhui</creator><creator>Tu, Chen</creator><creator>Gu, Huaimin</creator><creator>Luo, Dongxiang</creator><creator>Huang, Le</creator><creator>Zhang, Menglong</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0011-1379</orcidid><orcidid>https://orcid.org/0000-0003-3189-2171</orcidid></search><sort><creationdate>20221005</creationdate><title>Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance</title><author>Zhang, Gaotian ; Ke, Xi ; Liu, Xiao ; Liao, Haijun ; Wang, Weizhe ; Yu, He ; Wang, Kunqiang ; Yang, Shuhui ; Tu, Chen ; Gu, Huaimin ; Luo, Dongxiang ; Huang, Le ; Zhang, Menglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-9cbc3f7499862c4c179ca73e84a842098f4008feea6710f23d0a5803f4f389c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Gaotian</creatorcontrib><creatorcontrib>Ke, Xi</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Liao, Haijun</creatorcontrib><creatorcontrib>Wang, Weizhe</creatorcontrib><creatorcontrib>Yu, He</creatorcontrib><creatorcontrib>Wang, Kunqiang</creatorcontrib><creatorcontrib>Yang, Shuhui</creatorcontrib><creatorcontrib>Tu, Chen</creatorcontrib><creatorcontrib>Gu, Huaimin</creatorcontrib><creatorcontrib>Luo, Dongxiang</creatorcontrib><creatorcontrib>Huang, Le</creatorcontrib><creatorcontrib>Zhang, Menglong</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Gaotian</au><au>Ke, Xi</au><au>Liu, Xiao</au><au>Liao, Haijun</au><au>Wang, Weizhe</au><au>Yu, He</au><au>Wang, Kunqiang</au><au>Yang, Shuhui</au><au>Tu, Chen</au><au>Gu, Huaimin</au><au>Luo, Dongxiang</au><au>Huang, Le</au><au>Zhang, Menglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-05</date><risdate>2022</risdate><volume>14</volume><issue>39</issue><spage>44909</spage><epage>44921</epage><pages>44909-44921</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Heterogeneous photocatalysts are extensively used to achieve interfacial electric fields for acceleration of oriented charge carrier transport and further promotion of photocatalytic redox reactions. Unfortunately, the incoherent interfaces are almost present in the heterostructures owing to large lattice mismatch accompanied by the interfacial defects and high density of gap states, acting as high energy barriers for charge migration. In this work, we report the atomic engineering of CsPbBr3/PbSe heterogeneous interfaces and conversion from incoherent features to semicoherent characters via methyl acetate (MeOAc) purification of CsPbBr3 quantum dots (QDs) before composited with two-dimensional (2D)-PbSe, which is confirmed by high-resolution transmission electron microscopy. The photocatalytic performances and theoretical calculations indicate that semicoherent interfaces are favorable for improving the activity and reactivity of the heterostructure, triggering 3 times enhanced photocatalytic CO2 reduction rate with 91% selectivity and satisfactory stability. This study proposes a facile method for photocatalytic heterojunctions to transform incoherent interfaces to photocatalytically beneficial semicoherent boundaries, accompanying with a systematic analysis of the consequent chemical dynamics to demonstrate the mechanism of the semicoherent interface for supporting photocatalysis. The understandings gained from this work are valuable for rational interfacial lattice engineering of heterogeneous photocatalysts for efficient solar fuel production.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c09711</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0011-1379</orcidid><orcidid>https://orcid.org/0000-0003-3189-2171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-10, Vol.14 (39), p.44909-44921
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2717690858
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Interfacial Engineering of Semicoherent Interface at Purified CsPbBr3 Quantum Dots/2D-PbSe for Optimal CO2 Photoreduction Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Engineering%20of%20Semicoherent%20Interface%20at%20Purified%20CsPbBr3%20Quantum%20Dots/2D-PbSe%20for%20Optimal%20CO2%20Photoreduction%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Gaotian&rft.date=2022-10-05&rft.volume=14&rft.issue=39&rft.spage=44909&rft.epage=44921&rft.pages=44909-44921&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c09711&rft_dat=%3Cproquest_acs_j%3E2717690858%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717690858&rft_id=info:pmid/&rfr_iscdi=true