Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study

BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological medicine 2023-09, Vol.53 (12), p.5636-5644
Hauptverfasser: Lee, Heon-Jeong, Cho, Chul-Hyun, Lee, Taek, Jeong, Jaegwon, Yeom, Ji Won, Kim, Sojeong, Jeon, Sehyun, Seo, Ju Yeon, Moon, Eunsoo, Baek, Ji Hyun, Park, Dong Yeon, Kim, Se Joo, Ha, Tae Hyon, Cha, Boseok, Kang, Hee-Ju, Ahn, Yong-Min, Lee, Yujin, Lee, Jung-Been, Kim, Leen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5644
container_issue 12
container_start_page 5636
container_title Psychological medicine
container_volume 53
creator Lee, Heon-Jeong
Cho, Chul-Hyun
Lee, Taek
Jeong, Jaegwon
Yeom, Ji Won
Kim, Sojeong
Jeon, Sehyun
Seo, Ju Yeon
Moon, Eunsoo
Baek, Ji Hyun
Park, Dong Yeon
Kim, Se Joo
Ha, Tae Hyon
Cha, Boseok
Kang, Hee-Ju
Ahn, Yong-Min
Lee, Yujin
Lee, Jung-Been
Kim, Leen
description BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.
doi_str_mv 10.1017/S0033291722002847
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717688791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291722002847</cupid><sourcerecordid>2861116806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</originalsourceid><addsrcrecordid>eNp1kclqHDEQhkVIIBMnD5BbgS-5dKylF7VvxmQxMSTg5NyopZoZDd2SLKkd5rXyhFHbBoNDTgX1L3xFEfKe0Y-Msu7shlIheM86zinlsu5ekA2r276SfSdfks0qV6v-mrxJ6UApE6zmG_LnR0Rjdbbegd-CnQM6Y90OZu8NYLDJG4SIeokRnUZY0qpGVFOV7Yxg7M5mNUHYo_P5GDCBdTCrg49gMERMae1WzsBog59UWZfSaDDeO2_8kvfwzZfGc1AQok8BC88dglMr1m9bALTf-5gh5cUc35JXWzUlfPc4T8ivz59-Xn6trr9_ubq8uK60aGiuUHHZMhRN32gpRtMKLUZdG456NLU0Wrc1lz12RVe0FobVvTaN6rFlI6pGnJAPD72F6XbBlIfZJo3TpBz6JQ28Y10rZdezYj19Zj34JbpCN6wQjLWStsXFHly6HJkibocQ7azicWB0WL84_PPFkhGPGTWP0ZodPlX_P_UX4r6jeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861116806</pqid></control><display><type>article</type><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Cambridge Journals Online</source><creator>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</creator><creatorcontrib>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</creatorcontrib><description>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</description><identifier>ISSN: 0033-2917</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291722002847</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Bipolar disorder ; Circadian rhythm ; Circadian rhythms ; Clinical interviews ; Cohort analysis ; Consortia ; Depressive personality disorders ; Disruption ; Ecological momentary assessment ; Emotional disorders ; Heart rate ; Hospitals ; Impending ; Mental depression ; Mental disorders ; Mood ; Mood disorders ; Original Article ; Patients ; Phenotypes ; Predictions ; Recurrence ; Rhythm ; Sleep ; Smartphones ; Symptom management ; Wearable computers</subject><ispartof>Psychological medicine, 2023-09, Vol.53 (12), p.5636-5644</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</citedby><cites>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</cites><orcidid>0000-0002-9560-2383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291722002847/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,12825,27901,27902,30976,55603</link.rule.ids></links><search><creatorcontrib>Lee, Heon-Jeong</creatorcontrib><creatorcontrib>Cho, Chul-Hyun</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><creatorcontrib>Jeong, Jaegwon</creatorcontrib><creatorcontrib>Yeom, Ji Won</creatorcontrib><creatorcontrib>Kim, Sojeong</creatorcontrib><creatorcontrib>Jeon, Sehyun</creatorcontrib><creatorcontrib>Seo, Ju Yeon</creatorcontrib><creatorcontrib>Moon, Eunsoo</creatorcontrib><creatorcontrib>Baek, Ji Hyun</creatorcontrib><creatorcontrib>Park, Dong Yeon</creatorcontrib><creatorcontrib>Kim, Se Joo</creatorcontrib><creatorcontrib>Ha, Tae Hyon</creatorcontrib><creatorcontrib>Cha, Boseok</creatorcontrib><creatorcontrib>Kang, Hee-Ju</creatorcontrib><creatorcontrib>Ahn, Yong-Min</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Lee, Jung-Been</creatorcontrib><creatorcontrib>Kim, Leen</creatorcontrib><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</description><subject>Algorithms</subject><subject>Bipolar disorder</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Clinical interviews</subject><subject>Cohort analysis</subject><subject>Consortia</subject><subject>Depressive personality disorders</subject><subject>Disruption</subject><subject>Ecological momentary assessment</subject><subject>Emotional disorders</subject><subject>Heart rate</subject><subject>Hospitals</subject><subject>Impending</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mood</subject><subject>Mood disorders</subject><subject>Original Article</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Predictions</subject><subject>Recurrence</subject><subject>Rhythm</subject><subject>Sleep</subject><subject>Smartphones</subject><subject>Symptom management</subject><subject>Wearable computers</subject><issn>0033-2917</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kclqHDEQhkVIIBMnD5BbgS-5dKylF7VvxmQxMSTg5NyopZoZDd2SLKkd5rXyhFHbBoNDTgX1L3xFEfKe0Y-Msu7shlIheM86zinlsu5ekA2r276SfSdfks0qV6v-mrxJ6UApE6zmG_LnR0Rjdbbegd-CnQM6Y90OZu8NYLDJG4SIeokRnUZY0qpGVFOV7Yxg7M5mNUHYo_P5GDCBdTCrg49gMERMae1WzsBog59UWZfSaDDeO2_8kvfwzZfGc1AQok8BC88dglMr1m9bALTf-5gh5cUc35JXWzUlfPc4T8ivz59-Xn6trr9_ubq8uK60aGiuUHHZMhRN32gpRtMKLUZdG456NLU0Wrc1lz12RVe0FobVvTaN6rFlI6pGnJAPD72F6XbBlIfZJo3TpBz6JQ28Y10rZdezYj19Zj34JbpCN6wQjLWStsXFHly6HJkibocQ7azicWB0WL84_PPFkhGPGTWP0ZodPlX_P_UX4r6jeA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lee, Heon-Jeong</creator><creator>Cho, Chul-Hyun</creator><creator>Lee, Taek</creator><creator>Jeong, Jaegwon</creator><creator>Yeom, Ji Won</creator><creator>Kim, Sojeong</creator><creator>Jeon, Sehyun</creator><creator>Seo, Ju Yeon</creator><creator>Moon, Eunsoo</creator><creator>Baek, Ji Hyun</creator><creator>Park, Dong Yeon</creator><creator>Kim, Se Joo</creator><creator>Ha, Tae Hyon</creator><creator>Cha, Boseok</creator><creator>Kang, Hee-Ju</creator><creator>Ahn, Yong-Min</creator><creator>Lee, Yujin</creator><creator>Lee, Jung-Been</creator><creator>Kim, Leen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9560-2383</orcidid></search><sort><creationdate>20230901</creationdate><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><author>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bipolar disorder</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Clinical interviews</topic><topic>Cohort analysis</topic><topic>Consortia</topic><topic>Depressive personality disorders</topic><topic>Disruption</topic><topic>Ecological momentary assessment</topic><topic>Emotional disorders</topic><topic>Heart rate</topic><topic>Hospitals</topic><topic>Impending</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mood</topic><topic>Mood disorders</topic><topic>Original Article</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Predictions</topic><topic>Recurrence</topic><topic>Rhythm</topic><topic>Sleep</topic><topic>Smartphones</topic><topic>Symptom management</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heon-Jeong</creatorcontrib><creatorcontrib>Cho, Chul-Hyun</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><creatorcontrib>Jeong, Jaegwon</creatorcontrib><creatorcontrib>Yeom, Ji Won</creatorcontrib><creatorcontrib>Kim, Sojeong</creatorcontrib><creatorcontrib>Jeon, Sehyun</creatorcontrib><creatorcontrib>Seo, Ju Yeon</creatorcontrib><creatorcontrib>Moon, Eunsoo</creatorcontrib><creatorcontrib>Baek, Ji Hyun</creatorcontrib><creatorcontrib>Park, Dong Yeon</creatorcontrib><creatorcontrib>Kim, Se Joo</creatorcontrib><creatorcontrib>Ha, Tae Hyon</creatorcontrib><creatorcontrib>Cha, Boseok</creatorcontrib><creatorcontrib>Kang, Hee-Ju</creatorcontrib><creatorcontrib>Ahn, Yong-Min</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Lee, Jung-Been</creatorcontrib><creatorcontrib>Kim, Leen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>Sociology (Proquest)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heon-Jeong</au><au>Cho, Chul-Hyun</au><au>Lee, Taek</au><au>Jeong, Jaegwon</au><au>Yeom, Ji Won</au><au>Kim, Sojeong</au><au>Jeon, Sehyun</au><au>Seo, Ju Yeon</au><au>Moon, Eunsoo</au><au>Baek, Ji Hyun</au><au>Park, Dong Yeon</au><au>Kim, Se Joo</au><au>Ha, Tae Hyon</au><au>Cha, Boseok</au><au>Kang, Hee-Ju</au><au>Ahn, Yong-Min</au><au>Lee, Yujin</au><au>Lee, Jung-Been</au><au>Kim, Leen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>53</volume><issue>12</issue><spage>5636</spage><epage>5644</epage><pages>5636-5644</pages><issn>0033-2917</issn><eissn>1469-8978</eissn><abstract>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0033291722002847</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9560-2383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-2917
ispartof Psychological medicine, 2023-09, Vol.53 (12), p.5636-5644
issn 0033-2917
1469-8978
language eng
recordid cdi_proquest_miscellaneous_2717688791
source Applied Social Sciences Index & Abstracts (ASSIA); Cambridge Journals Online
subjects Algorithms
Bipolar disorder
Circadian rhythm
Circadian rhythms
Clinical interviews
Cohort analysis
Consortia
Depressive personality disorders
Disruption
Ecological momentary assessment
Emotional disorders
Heart rate
Hospitals
Impending
Mental depression
Mental disorders
Mood
Mood disorders
Original Article
Patients
Phenotypes
Predictions
Recurrence
Rhythm
Sleep
Smartphones
Symptom management
Wearable computers
title Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20impending%20mood%20episode%20recurrence%20using%20real-time%20digital%20phenotypes%20in%20major%20depression%20and%20bipolar%20disorders%20in%20South%20Korea:%20a%20prospective%20nationwide%20cohort%20study&rft.jtitle=Psychological%20medicine&rft.au=Lee,%20Heon-Jeong&rft.date=2023-09-01&rft.volume=53&rft.issue=12&rft.spage=5636&rft.epage=5644&rft.pages=5636-5644&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291722002847&rft_dat=%3Cproquest_cross%3E2861116806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861116806&rft_id=info:pmid/&rft_cupid=10_1017_S0033291722002847&rfr_iscdi=true