Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study
BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrence...
Gespeichert in:
Veröffentlicht in: | Psychological medicine 2023-09, Vol.53 (12), p.5636-5644 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5644 |
---|---|
container_issue | 12 |
container_start_page | 5636 |
container_title | Psychological medicine |
container_volume | 53 |
creator | Lee, Heon-Jeong Cho, Chul-Hyun Lee, Taek Jeong, Jaegwon Yeom, Ji Won Kim, Sojeong Jeon, Sehyun Seo, Ju Yeon Moon, Eunsoo Baek, Ji Hyun Park, Dong Yeon Kim, Se Joo Ha, Tae Hyon Cha, Boseok Kang, Hee-Ju Ahn, Yong-Min Lee, Yujin Lee, Jung-Been Kim, Leen |
description | BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders. |
doi_str_mv | 10.1017/S0033291722002847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717688791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0033291722002847</cupid><sourcerecordid>2861116806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</originalsourceid><addsrcrecordid>eNp1kclqHDEQhkVIIBMnD5BbgS-5dKylF7VvxmQxMSTg5NyopZoZDd2SLKkd5rXyhFHbBoNDTgX1L3xFEfKe0Y-Msu7shlIheM86zinlsu5ekA2r276SfSdfks0qV6v-mrxJ6UApE6zmG_LnR0Rjdbbegd-CnQM6Y90OZu8NYLDJG4SIeokRnUZY0qpGVFOV7Yxg7M5mNUHYo_P5GDCBdTCrg49gMERMae1WzsBog59UWZfSaDDeO2_8kvfwzZfGc1AQok8BC88dglMr1m9bALTf-5gh5cUc35JXWzUlfPc4T8ivz59-Xn6trr9_ubq8uK60aGiuUHHZMhRN32gpRtMKLUZdG456NLU0Wrc1lz12RVe0FobVvTaN6rFlI6pGnJAPD72F6XbBlIfZJo3TpBz6JQ28Y10rZdezYj19Zj34JbpCN6wQjLWStsXFHly6HJkibocQ7azicWB0WL84_PPFkhGPGTWP0ZodPlX_P_UX4r6jeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861116806</pqid></control><display><type>article</type><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Cambridge Journals Online</source><creator>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</creator><creatorcontrib>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</creatorcontrib><description>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</description><identifier>ISSN: 0033-2917</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291722002847</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Bipolar disorder ; Circadian rhythm ; Circadian rhythms ; Clinical interviews ; Cohort analysis ; Consortia ; Depressive personality disorders ; Disruption ; Ecological momentary assessment ; Emotional disorders ; Heart rate ; Hospitals ; Impending ; Mental depression ; Mental disorders ; Mood ; Mood disorders ; Original Article ; Patients ; Phenotypes ; Predictions ; Recurrence ; Rhythm ; Sleep ; Smartphones ; Symptom management ; Wearable computers</subject><ispartof>Psychological medicine, 2023-09, Vol.53 (12), p.5636-5644</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</citedby><cites>FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</cites><orcidid>0000-0002-9560-2383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0033291722002847/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,12825,27901,27902,30976,55603</link.rule.ids></links><search><creatorcontrib>Lee, Heon-Jeong</creatorcontrib><creatorcontrib>Cho, Chul-Hyun</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><creatorcontrib>Jeong, Jaegwon</creatorcontrib><creatorcontrib>Yeom, Ji Won</creatorcontrib><creatorcontrib>Kim, Sojeong</creatorcontrib><creatorcontrib>Jeon, Sehyun</creatorcontrib><creatorcontrib>Seo, Ju Yeon</creatorcontrib><creatorcontrib>Moon, Eunsoo</creatorcontrib><creatorcontrib>Baek, Ji Hyun</creatorcontrib><creatorcontrib>Park, Dong Yeon</creatorcontrib><creatorcontrib>Kim, Se Joo</creatorcontrib><creatorcontrib>Ha, Tae Hyon</creatorcontrib><creatorcontrib>Cha, Boseok</creatorcontrib><creatorcontrib>Kang, Hee-Ju</creatorcontrib><creatorcontrib>Ahn, Yong-Min</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Lee, Jung-Been</creatorcontrib><creatorcontrib>Kim, Leen</creatorcontrib><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><title>Psychological medicine</title><addtitle>Psychol. Med</addtitle><description>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</description><subject>Algorithms</subject><subject>Bipolar disorder</subject><subject>Circadian rhythm</subject><subject>Circadian rhythms</subject><subject>Clinical interviews</subject><subject>Cohort analysis</subject><subject>Consortia</subject><subject>Depressive personality disorders</subject><subject>Disruption</subject><subject>Ecological momentary assessment</subject><subject>Emotional disorders</subject><subject>Heart rate</subject><subject>Hospitals</subject><subject>Impending</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mood</subject><subject>Mood disorders</subject><subject>Original Article</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Predictions</subject><subject>Recurrence</subject><subject>Rhythm</subject><subject>Sleep</subject><subject>Smartphones</subject><subject>Symptom management</subject><subject>Wearable computers</subject><issn>0033-2917</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kclqHDEQhkVIIBMnD5BbgS-5dKylF7VvxmQxMSTg5NyopZoZDd2SLKkd5rXyhFHbBoNDTgX1L3xFEfKe0Y-Msu7shlIheM86zinlsu5ekA2r276SfSdfks0qV6v-mrxJ6UApE6zmG_LnR0Rjdbbegd-CnQM6Y90OZu8NYLDJG4SIeokRnUZY0qpGVFOV7Yxg7M5mNUHYo_P5GDCBdTCrg49gMERMae1WzsBog59UWZfSaDDeO2_8kvfwzZfGc1AQok8BC88dglMr1m9bALTf-5gh5cUc35JXWzUlfPc4T8ivz59-Xn6trr9_ubq8uK60aGiuUHHZMhRN32gpRtMKLUZdG456NLU0Wrc1lz12RVe0FobVvTaN6rFlI6pGnJAPD72F6XbBlIfZJo3TpBz6JQ28Y10rZdezYj19Zj34JbpCN6wQjLWStsXFHly6HJkibocQ7azicWB0WL84_PPFkhGPGTWP0ZodPlX_P_UX4r6jeA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Lee, Heon-Jeong</creator><creator>Cho, Chul-Hyun</creator><creator>Lee, Taek</creator><creator>Jeong, Jaegwon</creator><creator>Yeom, Ji Won</creator><creator>Kim, Sojeong</creator><creator>Jeon, Sehyun</creator><creator>Seo, Ju Yeon</creator><creator>Moon, Eunsoo</creator><creator>Baek, Ji Hyun</creator><creator>Park, Dong Yeon</creator><creator>Kim, Se Joo</creator><creator>Ha, Tae Hyon</creator><creator>Cha, Boseok</creator><creator>Kang, Hee-Ju</creator><creator>Ahn, Yong-Min</creator><creator>Lee, Yujin</creator><creator>Lee, Jung-Been</creator><creator>Kim, Leen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9560-2383</orcidid></search><sort><creationdate>20230901</creationdate><title>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</title><author>Lee, Heon-Jeong ; Cho, Chul-Hyun ; Lee, Taek ; Jeong, Jaegwon ; Yeom, Ji Won ; Kim, Sojeong ; Jeon, Sehyun ; Seo, Ju Yeon ; Moon, Eunsoo ; Baek, Ji Hyun ; Park, Dong Yeon ; Kim, Se Joo ; Ha, Tae Hyon ; Cha, Boseok ; Kang, Hee-Ju ; Ahn, Yong-Min ; Lee, Yujin ; Lee, Jung-Been ; Kim, Leen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-ea2861e3595c83bd63c3bc4d2ecbd48dcc64289e795ca043d149cd5a9e61bea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bipolar disorder</topic><topic>Circadian rhythm</topic><topic>Circadian rhythms</topic><topic>Clinical interviews</topic><topic>Cohort analysis</topic><topic>Consortia</topic><topic>Depressive personality disorders</topic><topic>Disruption</topic><topic>Ecological momentary assessment</topic><topic>Emotional disorders</topic><topic>Heart rate</topic><topic>Hospitals</topic><topic>Impending</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mood</topic><topic>Mood disorders</topic><topic>Original Article</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Predictions</topic><topic>Recurrence</topic><topic>Rhythm</topic><topic>Sleep</topic><topic>Smartphones</topic><topic>Symptom management</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heon-Jeong</creatorcontrib><creatorcontrib>Cho, Chul-Hyun</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><creatorcontrib>Jeong, Jaegwon</creatorcontrib><creatorcontrib>Yeom, Ji Won</creatorcontrib><creatorcontrib>Kim, Sojeong</creatorcontrib><creatorcontrib>Jeon, Sehyun</creatorcontrib><creatorcontrib>Seo, Ju Yeon</creatorcontrib><creatorcontrib>Moon, Eunsoo</creatorcontrib><creatorcontrib>Baek, Ji Hyun</creatorcontrib><creatorcontrib>Park, Dong Yeon</creatorcontrib><creatorcontrib>Kim, Se Joo</creatorcontrib><creatorcontrib>Ha, Tae Hyon</creatorcontrib><creatorcontrib>Cha, Boseok</creatorcontrib><creatorcontrib>Kang, Hee-Ju</creatorcontrib><creatorcontrib>Ahn, Yong-Min</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Lee, Jung-Been</creatorcontrib><creatorcontrib>Kim, Leen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>Sociology (Proquest)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heon-Jeong</au><au>Cho, Chul-Hyun</au><au>Lee, Taek</au><au>Jeong, Jaegwon</au><au>Yeom, Ji Won</au><au>Kim, Sojeong</au><au>Jeon, Sehyun</au><au>Seo, Ju Yeon</au><au>Moon, Eunsoo</au><au>Baek, Ji Hyun</au><au>Park, Dong Yeon</au><au>Kim, Se Joo</au><au>Ha, Tae Hyon</au><au>Cha, Boseok</au><au>Kang, Hee-Ju</au><au>Ahn, Yong-Min</au><au>Lee, Yujin</au><au>Lee, Jung-Been</au><au>Kim, Leen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol. Med</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>53</volume><issue>12</issue><spage>5636</spage><epage>5644</epage><pages>5636-5644</pages><issn>0033-2917</issn><eissn>1469-8978</eissn><abstract>BackgroundMood disorders require consistent management of symptoms to prevent recurrences of mood episodes. Circadian rhythm (CR) disruption is a key symptom of mood disorders to be proactively managed to prevent mood episode recurrences. This study aims to predict impending mood episodes recurrences using digital phenotypes related to CR obtained from wearable devices and smartphones.MethodsThe study is a multicenter, nationwide, prospective, observational study with major depressive disorder, bipolar disorder I, and bipolar II disorder. A total of 495 patients were recruited from eight hospitals in South Korea. Patients were followed up for an average of 279.7 days (a total sample of 75 506 days) with wearable devices and smartphones and with clinical interviews conducted every 3 months. Algorithms predicting impending mood episodes were developed with machine learning. Algorithm-predicted mood episodes were then compared to those identified through face-to-face clinical interviews incorporating ecological momentary assessments of daily mood and energy.ResultsTwo hundred seventy mood episodes recurred in 135 subjects during the follow-up period. The prediction accuracies for impending major depressive episodes, manic episodes, and hypomanic episodes for the next 3 days were 90.1, 92.6, and 93.0%, with the area under the curve values of 0.937, 0.957, and 0.963, respectively.ConclusionsWe predicted the onset of mood episode recurrences exclusively using digital phenotypes. Specifically, phenotypes indicating CR misalignment contributed the most to the prediction of episodes recurrences. Our findings suggest that monitoring of CR using digital devices can be useful in preventing and treating mood disorders.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0033291722002847</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9560-2383</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2917 |
ispartof | Psychological medicine, 2023-09, Vol.53 (12), p.5636-5644 |
issn | 0033-2917 1469-8978 |
language | eng |
recordid | cdi_proquest_miscellaneous_2717688791 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Cambridge Journals Online |
subjects | Algorithms Bipolar disorder Circadian rhythm Circadian rhythms Clinical interviews Cohort analysis Consortia Depressive personality disorders Disruption Ecological momentary assessment Emotional disorders Heart rate Hospitals Impending Mental depression Mental disorders Mood Mood disorders Original Article Patients Phenotypes Predictions Recurrence Rhythm Sleep Smartphones Symptom management Wearable computers |
title | Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: a prospective nationwide cohort study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20impending%20mood%20episode%20recurrence%20using%20real-time%20digital%20phenotypes%20in%20major%20depression%20and%20bipolar%20disorders%20in%20South%20Korea:%20a%20prospective%20nationwide%20cohort%20study&rft.jtitle=Psychological%20medicine&rft.au=Lee,%20Heon-Jeong&rft.date=2023-09-01&rft.volume=53&rft.issue=12&rft.spage=5636&rft.epage=5644&rft.pages=5636-5644&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291722002847&rft_dat=%3Cproquest_cross%3E2861116806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861116806&rft_id=info:pmid/&rft_cupid=10_1017_S0033291722002847&rfr_iscdi=true |