Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression
As a prime mover in Alzheimer’s disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation m...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2022-11, Vol.27 (11), p.4790-4799 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4799 |
---|---|
container_issue | 11 |
container_start_page | 4790 |
container_title | Molecular psychiatry |
container_volume | 27 |
creator | Chen, Xue Deng, Suixin Wang, Wenchao Castiglione, Stefania Duan, Zilei Luo, Lei Cianci, Francesca Zhang, Xiaoxue Xu, Jianglei Li, Hao Zhao, Jizong Kamau, Peter Muiruri Zhang, Zhiye Mwangi, James Li, Jiali Shu, Yousheng Hu, Xintian Mazzanti, Michele Lai, Ren |
description | As a prime mover in Alzheimer’s disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-β, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while
Clic1
knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD’s association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1. |
doi_str_mv | 10.1038/s41380-022-01790-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717687569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717687569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a67af3498e58011e195998966477ea25abed31df6ec741d4521d460b28531f733</originalsourceid><addsrcrecordid>eNp9kLlKBTEUhoMo7i9gIQM2NtHsSymiXuGCIFqHzMwZjcxyTWYKrXwNX88nMXpdwMImCZzv_0_4ENqj5IgSbo6ToNwQTBjDhGpLsFpBm1RohaXUZjW_ubRYUCM20FZKD4R8DOU62uAqJyknm-h6NnW-L3w_hi5UcSiDb4sFLMZQQzGfY66LaujHGMpphFSMQ3HSPt9D6CC-vbymog4JfIJiEYe7CCmFod9Ba41vE-x-3dvo9vzs5nSG51cXl6cnc1xxLUfslfYNF9aANIRSoFZaa6xSQmvwTPoSak7rRkGlBa2FZPlQpGRGctpozrfR4bI3736cII2uC6mCtvU9DFNyTFOtjJbKZvTgD_owTLHPv8uUMEpYxkim2JLKHlKK0LhFDJ2PT44S92HcLY27bNx9Gncqh_a_qqeyg_on8q04A3wJpDzq7yD-7v6n9h3Yg4sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748649220</pqid></control><display><type>article</type><title>Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Xue ; Deng, Suixin ; Wang, Wenchao ; Castiglione, Stefania ; Duan, Zilei ; Luo, Lei ; Cianci, Francesca ; Zhang, Xiaoxue ; Xu, Jianglei ; Li, Hao ; Zhao, Jizong ; Kamau, Peter Muiruri ; Zhang, Zhiye ; Mwangi, James ; Li, Jiali ; Shu, Yousheng ; Hu, Xintian ; Mazzanti, Michele ; Lai, Ren</creator><creatorcontrib>Chen, Xue ; Deng, Suixin ; Wang, Wenchao ; Castiglione, Stefania ; Duan, Zilei ; Luo, Lei ; Cianci, Francesca ; Zhang, Xiaoxue ; Xu, Jianglei ; Li, Hao ; Zhao, Jizong ; Kamau, Peter Muiruri ; Zhang, Zhiye ; Mwangi, James ; Li, Jiali ; Shu, Yousheng ; Hu, Xintian ; Mazzanti, Michele ; Lai, Ren</creatorcontrib><description>As a prime mover in Alzheimer’s disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-β, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while
Clic1
knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD’s association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-022-01790-6</identifier><identifier>PMID: 36138130</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/2 ; 13/21 ; 13/51 ; 14/19 ; 631/378 ; 631/80 ; 64/110 ; 64/60 ; Alzheimer Disease - metabolism ; Alzheimer Disease - pathology ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Animal models ; Animals ; Antimicrobial agents ; Antimicrobial peptides ; Atrophy ; Behavioral Sciences ; Biological Psychology ; Cathelicidins - metabolism ; Cathelicidins - pharmacology ; Chloride Channels - metabolism ; Cognition ; Excitotoxicity ; Humans ; Inflammation ; Medicine ; Medicine & Public Health ; Mice ; Microglia - metabolism ; Neurodegenerative diseases ; Neurofibrillary tangles ; Neurosciences ; Peptides ; Pharmacotherapy ; Phenotypes ; Psychiatry ; Synaptic plasticity ; Ventricle (lateral) ; β-Amyloid</subject><ispartof>Molecular psychiatry, 2022-11, Vol.27 (11), p.4790-4799</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a67af3498e58011e195998966477ea25abed31df6ec741d4521d460b28531f733</citedby><cites>FETCH-LOGICAL-c375t-a67af3498e58011e195998966477ea25abed31df6ec741d4521d460b28531f733</cites><orcidid>0000-0003-1216-4806 ; 0000-0002-2834-2876 ; 0000-0002-6579-947X ; 0000-0002-5999-8368 ; 0000-0003-4795-2570 ; 0000-0002-1819-3811 ; 0000-0002-3262-9685 ; 0000-0002-3123-2336 ; 0000-0002-5021-8660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-022-01790-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-022-01790-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36138130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xue</creatorcontrib><creatorcontrib>Deng, Suixin</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Castiglione, Stefania</creatorcontrib><creatorcontrib>Duan, Zilei</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Cianci, Francesca</creatorcontrib><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Xu, Jianglei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Jizong</creatorcontrib><creatorcontrib>Kamau, Peter Muiruri</creatorcontrib><creatorcontrib>Zhang, Zhiye</creatorcontrib><creatorcontrib>Mwangi, James</creatorcontrib><creatorcontrib>Li, Jiali</creatorcontrib><creatorcontrib>Shu, Yousheng</creatorcontrib><creatorcontrib>Hu, Xintian</creatorcontrib><creatorcontrib>Mazzanti, Michele</creatorcontrib><creatorcontrib>Lai, Ren</creatorcontrib><title>Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>As a prime mover in Alzheimer’s disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-β, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while
Clic1
knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD’s association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.</description><subject>13/1</subject><subject>13/2</subject><subject>13/21</subject><subject>13/51</subject><subject>14/19</subject><subject>631/378</subject><subject>631/80</subject><subject>64/110</subject><subject>64/60</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial peptides</subject><subject>Atrophy</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Cathelicidins - metabolism</subject><subject>Cathelicidins - pharmacology</subject><subject>Chloride Channels - metabolism</subject><subject>Cognition</subject><subject>Excitotoxicity</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Microglia - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Neurofibrillary tangles</subject><subject>Neurosciences</subject><subject>Peptides</subject><subject>Pharmacotherapy</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Synaptic plasticity</subject><subject>Ventricle (lateral)</subject><subject>β-Amyloid</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLlKBTEUhoMo7i9gIQM2NtHsSymiXuGCIFqHzMwZjcxyTWYKrXwNX88nMXpdwMImCZzv_0_4ENqj5IgSbo6ToNwQTBjDhGpLsFpBm1RohaXUZjW_ubRYUCM20FZKD4R8DOU62uAqJyknm-h6NnW-L3w_hi5UcSiDb4sFLMZQQzGfY66LaujHGMpphFSMQ3HSPt9D6CC-vbymog4JfIJiEYe7CCmFod9Ba41vE-x-3dvo9vzs5nSG51cXl6cnc1xxLUfslfYNF9aANIRSoFZaa6xSQmvwTPoSak7rRkGlBa2FZPlQpGRGctpozrfR4bI3736cII2uC6mCtvU9DFNyTFOtjJbKZvTgD_owTLHPv8uUMEpYxkim2JLKHlKK0LhFDJ2PT44S92HcLY27bNx9Gncqh_a_qqeyg_on8q04A3wJpDzq7yD-7v6n9h3Yg4sg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Chen, Xue</creator><creator>Deng, Suixin</creator><creator>Wang, Wenchao</creator><creator>Castiglione, Stefania</creator><creator>Duan, Zilei</creator><creator>Luo, Lei</creator><creator>Cianci, Francesca</creator><creator>Zhang, Xiaoxue</creator><creator>Xu, Jianglei</creator><creator>Li, Hao</creator><creator>Zhao, Jizong</creator><creator>Kamau, Peter Muiruri</creator><creator>Zhang, Zhiye</creator><creator>Mwangi, James</creator><creator>Li, Jiali</creator><creator>Shu, Yousheng</creator><creator>Hu, Xintian</creator><creator>Mazzanti, Michele</creator><creator>Lai, Ren</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1216-4806</orcidid><orcidid>https://orcid.org/0000-0002-2834-2876</orcidid><orcidid>https://orcid.org/0000-0002-6579-947X</orcidid><orcidid>https://orcid.org/0000-0002-5999-8368</orcidid><orcidid>https://orcid.org/0000-0003-4795-2570</orcidid><orcidid>https://orcid.org/0000-0002-1819-3811</orcidid><orcidid>https://orcid.org/0000-0002-3262-9685</orcidid><orcidid>https://orcid.org/0000-0002-3123-2336</orcidid><orcidid>https://orcid.org/0000-0002-5021-8660</orcidid></search><sort><creationdate>20221101</creationdate><title>Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression</title><author>Chen, Xue ; Deng, Suixin ; Wang, Wenchao ; Castiglione, Stefania ; Duan, Zilei ; Luo, Lei ; Cianci, Francesca ; Zhang, Xiaoxue ; Xu, Jianglei ; Li, Hao ; Zhao, Jizong ; Kamau, Peter Muiruri ; Zhang, Zhiye ; Mwangi, James ; Li, Jiali ; Shu, Yousheng ; Hu, Xintian ; Mazzanti, Michele ; Lai, Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a67af3498e58011e195998966477ea25abed31df6ec741d4521d460b28531f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/21</topic><topic>13/51</topic><topic>14/19</topic><topic>631/378</topic><topic>631/80</topic><topic>64/110</topic><topic>64/60</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial peptides</topic><topic>Atrophy</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Cathelicidins - metabolism</topic><topic>Cathelicidins - pharmacology</topic><topic>Chloride Channels - metabolism</topic><topic>Cognition</topic><topic>Excitotoxicity</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Microglia - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Neurofibrillary tangles</topic><topic>Neurosciences</topic><topic>Peptides</topic><topic>Pharmacotherapy</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Synaptic plasticity</topic><topic>Ventricle (lateral)</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xue</creatorcontrib><creatorcontrib>Deng, Suixin</creatorcontrib><creatorcontrib>Wang, Wenchao</creatorcontrib><creatorcontrib>Castiglione, Stefania</creatorcontrib><creatorcontrib>Duan, Zilei</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Cianci, Francesca</creatorcontrib><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Xu, Jianglei</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zhao, Jizong</creatorcontrib><creatorcontrib>Kamau, Peter Muiruri</creatorcontrib><creatorcontrib>Zhang, Zhiye</creatorcontrib><creatorcontrib>Mwangi, James</creatorcontrib><creatorcontrib>Li, Jiali</creatorcontrib><creatorcontrib>Shu, Yousheng</creatorcontrib><creatorcontrib>Hu, Xintian</creatorcontrib><creatorcontrib>Mazzanti, Michele</creatorcontrib><creatorcontrib>Lai, Ren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xue</au><au>Deng, Suixin</au><au>Wang, Wenchao</au><au>Castiglione, Stefania</au><au>Duan, Zilei</au><au>Luo, Lei</au><au>Cianci, Francesca</au><au>Zhang, Xiaoxue</au><au>Xu, Jianglei</au><au>Li, Hao</au><au>Zhao, Jizong</au><au>Kamau, Peter Muiruri</au><au>Zhang, Zhiye</au><au>Mwangi, James</au><au>Li, Jiali</au><au>Shu, Yousheng</au><au>Hu, Xintian</au><au>Mazzanti, Michele</au><au>Lai, Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>27</volume><issue>11</issue><spage>4790</spage><epage>4799</epage><pages>4790-4799</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>As a prime mover in Alzheimer’s disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-β, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while
Clic1
knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD’s association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36138130</pmid><doi>10.1038/s41380-022-01790-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1216-4806</orcidid><orcidid>https://orcid.org/0000-0002-2834-2876</orcidid><orcidid>https://orcid.org/0000-0002-6579-947X</orcidid><orcidid>https://orcid.org/0000-0002-5999-8368</orcidid><orcidid>https://orcid.org/0000-0003-4795-2570</orcidid><orcidid>https://orcid.org/0000-0002-1819-3811</orcidid><orcidid>https://orcid.org/0000-0002-3262-9685</orcidid><orcidid>https://orcid.org/0000-0002-3123-2336</orcidid><orcidid>https://orcid.org/0000-0002-5021-8660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2022-11, Vol.27 (11), p.4790-4799 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_proquest_miscellaneous_2717687569 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/1 13/2 13/21 13/51 14/19 631/378 631/80 64/110 64/60 Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Peptides - metabolism Animal models Animals Antimicrobial agents Antimicrobial peptides Atrophy Behavioral Sciences Biological Psychology Cathelicidins - metabolism Cathelicidins - pharmacology Chloride Channels - metabolism Cognition Excitotoxicity Humans Inflammation Medicine Medicine & Public Health Mice Microglia - metabolism Neurodegenerative diseases Neurofibrillary tangles Neurosciences Peptides Pharmacotherapy Phenotypes Psychiatry Synaptic plasticity Ventricle (lateral) β-Amyloid |
title | Human antimicrobial peptide LL-37 contributes to Alzheimer’s disease progression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20antimicrobial%20peptide%20LL-37%20contributes%20to%20Alzheimer%E2%80%99s%20disease%20progression&rft.jtitle=Molecular%20psychiatry&rft.au=Chen,%20Xue&rft.date=2022-11-01&rft.volume=27&rft.issue=11&rft.spage=4790&rft.epage=4799&rft.pages=4790-4799&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-022-01790-6&rft_dat=%3Cproquest_cross%3E2717687569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748649220&rft_id=info:pmid/36138130&rfr_iscdi=true |