Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection

Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2023-01, Vol.19 (1), p.45-54
Hauptverfasser: Yang, Jie, Song, Yang, Deng, Xiangyu, Vanegas, Jeffrey A., You, Zheng, Zhang, Yuxuan, Weng, Zhengyan, Avery, Lori, Dieckhaus, Kevin D., Peddi, Advaith, Gao, Yang, Zhang, Yi, Gao, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 45
container_title Nature chemical biology
container_volume 19
creator Yang, Jie
Song, Yang
Deng, Xiangyu
Vanegas, Jeffrey A.
You, Zheng
Zhang, Yuxuan
Weng, Zhengyan
Avery, Lori
Dieckhaus, Kevin D.
Peddi, Advaith
Gao, Yang
Zhang, Yi
Gao, Xue
description Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids. By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.
doi_str_mv 10.1038/s41589-022-01135-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717685513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717685513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMorl9_wIMUvHipZpqkTY-yrB-wIIKeQ5pOtEs3XZNW6b83uusKHjzNMO8z7wwvIadAL4EyeRU4CFmmNMtSCsBEOu6QAxAiSznPy91tL-iEHIawoJTlOch9MmE5MAmcHpDHmXtpHKLHOpl_6KkOwHTy0fSvCbpX7Uycm65tdY9et4k2ffPe9GNiO5-4wbTYmDhs6qTGHqPYuWOyZ3Ub8GRTj8jzzexpepfOH27vp9fz1HAo-7Si0hZM6lowLkTBkKMxtsxFxmiRA0qUZcFzpjm3QCm1KCtbVzLqmlWWsyNysfZd-e5twNCrZRMMxlcddkNQWQFFLoUAFtHzP-iiG7yL30VKyEIUNINIZWvK-C4Ej1atfLPUflRA1Vfgah24ioGr78DVGJfONtZDtcR6u_KTcATYGghRci_of2__Y_sJcX2KxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758757021</pqid></control><display><type>article</type><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</creator><creatorcontrib>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</creatorcontrib><description>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids. By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-022-01135-y</identifier><identifier>PMID: 36138140</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45 ; 631/92 ; Binding ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; COVID-19 ; CRISPR ; CRISPR-Cas Systems - genetics ; Domains ; Electrochemistry ; Eukaryotes ; Genome ; Genomes ; Humans ; Nucleic acids ; Nucleic Acids - genetics ; Nucleotides ; Platforms ; Prokaryotes ; Protein engineering ; Proteins ; Ribonucleic acid ; RNA ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>Nature chemical biology, 2023-01, Vol.19 (1), p.45-54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</citedby><cites>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</cites><orcidid>0000-0003-4399-2532 ; 0000-0003-3170-2980 ; 0000-0002-4037-0431 ; 0000-0003-4426-5636 ; 0000-0003-0626-0850 ; 0000-0003-3213-9704 ; 0000-0002-1604-4206 ; 0000-0002-0907-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36138140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Vanegas, Jeffrey A.</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Weng, Zhengyan</creatorcontrib><creatorcontrib>Avery, Lori</creatorcontrib><creatorcontrib>Dieckhaus, Kevin D.</creatorcontrib><creatorcontrib>Peddi, Advaith</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids. By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</description><subject>631/45</subject><subject>631/92</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>COVID-19</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Domains</subject><subject>Electrochemistry</subject><subject>Eukaryotes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Humans</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - genetics</subject><subject>Nucleotides</subject><subject>Platforms</subject><subject>Prokaryotes</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMorl9_wIMUvHipZpqkTY-yrB-wIIKeQ5pOtEs3XZNW6b83uusKHjzNMO8z7wwvIadAL4EyeRU4CFmmNMtSCsBEOu6QAxAiSznPy91tL-iEHIawoJTlOch9MmE5MAmcHpDHmXtpHKLHOpl_6KkOwHTy0fSvCbpX7Uycm65tdY9et4k2ffPe9GNiO5-4wbTYmDhs6qTGHqPYuWOyZ3Ub8GRTj8jzzexpepfOH27vp9fz1HAo-7Si0hZM6lowLkTBkKMxtsxFxmiRA0qUZcFzpjm3QCm1KCtbVzLqmlWWsyNysfZd-e5twNCrZRMMxlcddkNQWQFFLoUAFtHzP-iiG7yL30VKyEIUNINIZWvK-C4Ej1atfLPUflRA1Vfgah24ioGr78DVGJfONtZDtcR6u_KTcATYGghRci_of2__Y_sJcX2KxQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yang, Jie</creator><creator>Song, Yang</creator><creator>Deng, Xiangyu</creator><creator>Vanegas, Jeffrey A.</creator><creator>You, Zheng</creator><creator>Zhang, Yuxuan</creator><creator>Weng, Zhengyan</creator><creator>Avery, Lori</creator><creator>Dieckhaus, Kevin D.</creator><creator>Peddi, Advaith</creator><creator>Gao, Yang</creator><creator>Zhang, Yi</creator><creator>Gao, Xue</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3170-2980</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0003-4426-5636</orcidid><orcidid>https://orcid.org/0000-0003-0626-0850</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-1604-4206</orcidid><orcidid>https://orcid.org/0000-0002-0907-663X</orcidid></search><sort><creationdate>20230101</creationdate><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><author>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/45</topic><topic>631/92</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>COVID-19</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Domains</topic><topic>Electrochemistry</topic><topic>Eukaryotes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Humans</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - genetics</topic><topic>Nucleotides</topic><topic>Platforms</topic><topic>Prokaryotes</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Vanegas, Jeffrey A.</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Weng, Zhengyan</creatorcontrib><creatorcontrib>Avery, Lori</creatorcontrib><creatorcontrib>Dieckhaus, Kevin D.</creatorcontrib><creatorcontrib>Peddi, Advaith</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Song, Yang</au><au>Deng, Xiangyu</au><au>Vanegas, Jeffrey A.</au><au>You, Zheng</au><au>Zhang, Yuxuan</au><au>Weng, Zhengyan</au><au>Avery, Lori</au><au>Dieckhaus, Kevin D.</au><au>Peddi, Advaith</au><au>Gao, Yang</au><au>Zhang, Yi</au><au>Gao, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>45</spage><epage>54</epage><pages>45-54</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids. By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36138140</pmid><doi>10.1038/s41589-022-01135-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3170-2980</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0003-4426-5636</orcidid><orcidid>https://orcid.org/0000-0003-0626-0850</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-1604-4206</orcidid><orcidid>https://orcid.org/0000-0002-0907-663X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2023-01, Vol.19 (1), p.45-54
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_2717685513
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/45
631/92
Binding
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
COVID-19
CRISPR
CRISPR-Cas Systems - genetics
Domains
Electrochemistry
Eukaryotes
Genome
Genomes
Humans
Nucleic acids
Nucleic Acids - genetics
Nucleotides
Platforms
Prokaryotes
Protein engineering
Proteins
Ribonucleic acid
RNA
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
title Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20LwaCas13a%20with%20enhanced%20collateral%20activity%20for%20nucleic%20acid%20detection&rft.jtitle=Nature%20chemical%20biology&rft.au=Yang,%20Jie&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=45&rft.epage=54&rft.pages=45-54&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-022-01135-y&rft_dat=%3Cproquest_cross%3E2717685513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758757021&rft_id=info:pmid/36138140&rfr_iscdi=true