Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection
Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucle...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2023-01, Vol.19 (1), p.45-54 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Nature chemical biology |
container_volume | 19 |
creator | Yang, Jie Song, Yang Deng, Xiangyu Vanegas, Jeffrey A. You, Zheng Zhang, Yuxuan Weng, Zhengyan Avery, Lori Dieckhaus, Kevin D. Peddi, Advaith Gao, Yang Zhang, Yi Gao, Xue |
description | Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the
Leptotrichia wadei
(Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.
By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms. |
doi_str_mv | 10.1038/s41589-022-01135-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717685513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717685513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMorl9_wIMUvHipZpqkTY-yrB-wIIKeQ5pOtEs3XZNW6b83uusKHjzNMO8z7wwvIadAL4EyeRU4CFmmNMtSCsBEOu6QAxAiSznPy91tL-iEHIawoJTlOch9MmE5MAmcHpDHmXtpHKLHOpl_6KkOwHTy0fSvCbpX7Uycm65tdY9et4k2ffPe9GNiO5-4wbTYmDhs6qTGHqPYuWOyZ3Ub8GRTj8jzzexpepfOH27vp9fz1HAo-7Si0hZM6lowLkTBkKMxtsxFxmiRA0qUZcFzpjm3QCm1KCtbVzLqmlWWsyNysfZd-e5twNCrZRMMxlcddkNQWQFFLoUAFtHzP-iiG7yL30VKyEIUNINIZWvK-C4Ej1atfLPUflRA1Vfgah24ioGr78DVGJfONtZDtcR6u_KTcATYGghRci_of2__Y_sJcX2KxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758757021</pqid></control><display><type>article</type><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</creator><creatorcontrib>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</creatorcontrib><description>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the
Leptotrichia wadei
(Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.
By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-022-01135-y</identifier><identifier>PMID: 36138140</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45 ; 631/92 ; Binding ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; COVID-19 ; CRISPR ; CRISPR-Cas Systems - genetics ; Domains ; Electrochemistry ; Eukaryotes ; Genome ; Genomes ; Humans ; Nucleic acids ; Nucleic Acids - genetics ; Nucleotides ; Platforms ; Prokaryotes ; Protein engineering ; Proteins ; Ribonucleic acid ; RNA ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>Nature chemical biology, 2023-01, Vol.19 (1), p.45-54</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</citedby><cites>FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</cites><orcidid>0000-0003-4399-2532 ; 0000-0003-3170-2980 ; 0000-0002-4037-0431 ; 0000-0003-4426-5636 ; 0000-0003-0626-0850 ; 0000-0003-3213-9704 ; 0000-0002-1604-4206 ; 0000-0002-0907-663X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36138140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Vanegas, Jeffrey A.</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Weng, Zhengyan</creatorcontrib><creatorcontrib>Avery, Lori</creatorcontrib><creatorcontrib>Dieckhaus, Kevin D.</creatorcontrib><creatorcontrib>Peddi, Advaith</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the
Leptotrichia wadei
(Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.
By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</description><subject>631/45</subject><subject>631/92</subject><subject>Binding</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>COVID-19</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Domains</subject><subject>Electrochemistry</subject><subject>Eukaryotes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Humans</subject><subject>Nucleic acids</subject><subject>Nucleic Acids - genetics</subject><subject>Nucleotides</subject><subject>Platforms</subject><subject>Prokaryotes</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAQhoMorl9_wIMUvHipZpqkTY-yrB-wIIKeQ5pOtEs3XZNW6b83uusKHjzNMO8z7wwvIadAL4EyeRU4CFmmNMtSCsBEOu6QAxAiSznPy91tL-iEHIawoJTlOch9MmE5MAmcHpDHmXtpHKLHOpl_6KkOwHTy0fSvCbpX7Uycm65tdY9et4k2ffPe9GNiO5-4wbTYmDhs6qTGHqPYuWOyZ3Ub8GRTj8jzzexpepfOH27vp9fz1HAo-7Si0hZM6lowLkTBkKMxtsxFxmiRA0qUZcFzpjm3QCm1KCtbVzLqmlWWsyNysfZd-e5twNCrZRMMxlcddkNQWQFFLoUAFtHzP-iiG7yL30VKyEIUNINIZWvK-C4Ej1atfLPUflRA1Vfgah24ioGr78DVGJfONtZDtcR6u_KTcATYGghRci_of2__Y_sJcX2KxQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yang, Jie</creator><creator>Song, Yang</creator><creator>Deng, Xiangyu</creator><creator>Vanegas, Jeffrey A.</creator><creator>You, Zheng</creator><creator>Zhang, Yuxuan</creator><creator>Weng, Zhengyan</creator><creator>Avery, Lori</creator><creator>Dieckhaus, Kevin D.</creator><creator>Peddi, Advaith</creator><creator>Gao, Yang</creator><creator>Zhang, Yi</creator><creator>Gao, Xue</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3170-2980</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0003-4426-5636</orcidid><orcidid>https://orcid.org/0000-0003-0626-0850</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-1604-4206</orcidid><orcidid>https://orcid.org/0000-0002-0907-663X</orcidid></search><sort><creationdate>20230101</creationdate><title>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</title><author>Yang, Jie ; Song, Yang ; Deng, Xiangyu ; Vanegas, Jeffrey A. ; You, Zheng ; Zhang, Yuxuan ; Weng, Zhengyan ; Avery, Lori ; Dieckhaus, Kevin D. ; Peddi, Advaith ; Gao, Yang ; Zhang, Yi ; Gao, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-b08f738ad5345573e4eccf965230761e8e897463a44f1000fe8bfdb8523a3bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/45</topic><topic>631/92</topic><topic>Binding</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>COVID-19</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Domains</topic><topic>Electrochemistry</topic><topic>Eukaryotes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Humans</topic><topic>Nucleic acids</topic><topic>Nucleic Acids - genetics</topic><topic>Nucleotides</topic><topic>Platforms</topic><topic>Prokaryotes</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Deng, Xiangyu</creatorcontrib><creatorcontrib>Vanegas, Jeffrey A.</creatorcontrib><creatorcontrib>You, Zheng</creatorcontrib><creatorcontrib>Zhang, Yuxuan</creatorcontrib><creatorcontrib>Weng, Zhengyan</creatorcontrib><creatorcontrib>Avery, Lori</creatorcontrib><creatorcontrib>Dieckhaus, Kevin D.</creatorcontrib><creatorcontrib>Peddi, Advaith</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Song, Yang</au><au>Deng, Xiangyu</au><au>Vanegas, Jeffrey A.</au><au>You, Zheng</au><au>Zhang, Yuxuan</au><au>Weng, Zhengyan</au><au>Avery, Lori</au><au>Dieckhaus, Kevin D.</au><au>Peddi, Advaith</au><au>Gao, Yang</au><au>Zhang, Yi</au><au>Gao, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>19</volume><issue>1</issue><spage>45</spage><epage>54</epage><pages>45-54</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the
Leptotrichia wadei
(Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.
By inserting RNA-binding domains to an active-site-proximal loop amidst CRISPR–Cas, Yang, Song et al. generate variants with enhanced collateral activity for ultrasensitive and amplification-free RNA detection when coupled with electrochemical sensing platforms.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36138140</pmid><doi>10.1038/s41589-022-01135-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4399-2532</orcidid><orcidid>https://orcid.org/0000-0003-3170-2980</orcidid><orcidid>https://orcid.org/0000-0002-4037-0431</orcidid><orcidid>https://orcid.org/0000-0003-4426-5636</orcidid><orcidid>https://orcid.org/0000-0003-0626-0850</orcidid><orcidid>https://orcid.org/0000-0003-3213-9704</orcidid><orcidid>https://orcid.org/0000-0002-1604-4206</orcidid><orcidid>https://orcid.org/0000-0002-0907-663X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2023-01, Vol.19 (1), p.45-54 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_2717685513 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/45 631/92 Binding Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science COVID-19 CRISPR CRISPR-Cas Systems - genetics Domains Electrochemistry Eukaryotes Genome Genomes Humans Nucleic acids Nucleic Acids - genetics Nucleotides Platforms Prokaryotes Protein engineering Proteins Ribonucleic acid RNA SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 |
title | Engineered LwaCas13a with enhanced collateral activity for nucleic acid detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20LwaCas13a%20with%20enhanced%20collateral%20activity%20for%20nucleic%20acid%20detection&rft.jtitle=Nature%20chemical%20biology&rft.au=Yang,%20Jie&rft.date=2023-01-01&rft.volume=19&rft.issue=1&rft.spage=45&rft.epage=54&rft.pages=45-54&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-022-01135-y&rft_dat=%3Cproquest_cross%3E2717685513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758757021&rft_id=info:pmid/36138140&rfr_iscdi=true |