A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer

The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer gene therapy 2023-01, Vol.30 (1), p.192-208
Hauptverfasser: Liu, Qun, Liu, Heshu, Huang, Xuying, Fan, Xiaona, Xiao, Zeru, Yan, Rui, Yao, Jiannan, An, Guanyu, Ge, Yang, Miao, Jinwei, Liu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 1
container_start_page 192
container_title Cancer gene therapy
container_volume 30
creator Liu, Qun
Liu, Heshu
Huang, Xuying
Fan, Xiaona
Xiao, Zeru
Yan, Rui
Yao, Jiannan
An, Guanyu
Ge, Yang
Miao, Jinwei
Liu, Jian
description The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.
doi_str_mv 10.1038/s41417-022-00538-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717683756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2765887774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-99e814696c497493e88c128fc3ee83abb6734bffb587dd9fefb4930d12b29ea23</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EouXyAgzIEguLwZcktsdQ7ipiKQOT5SQnVao0KXZSwdvjkgISA9MZznf-8-tD6ITRC0aFuvQRi5gklHNCaSwU4TtozCKZkDimdBeNqeaaME3FCB14v6A0LKXYRyORsJgJIcboMcWddXPobFYDfnq9mnKSztJrju175fG8XYNrPM6hrvHKtXVVgrNd1Ta4anC7tq6yDc5tk4M7QnulrT0cb-cherm9mU3uyfT57mGSTkkuZNwRrUGxKNFJHmkZaQFK5YyrMhcAStgsS6SIsrLMYiWLQpdQZoGiBeMZ12C5OETnQ27o89aD78yy8puCtoG294ZLJhMVfiUBPfuDLtreNaFdoJJYKSllFCg-ULlrvXdQmpWrltZ9GEbNxrQZTJtg2nyZNpsWp9voPltC8XPyrTYAYgB8WDVzcL-__4n9BF0khvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765887774</pqid></control><display><type>article</type><title>A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Qun ; Liu, Heshu ; Huang, Xuying ; Fan, Xiaona ; Xiao, Zeru ; Yan, Rui ; Yao, Jiannan ; An, Guanyu ; Ge, Yang ; Miao, Jinwei ; Liu, Jian</creator><creatorcontrib>Liu, Qun ; Liu, Heshu ; Huang, Xuying ; Fan, Xiaona ; Xiao, Zeru ; Yan, Rui ; Yao, Jiannan ; An, Guanyu ; Ge, Yang ; Miao, Jinwei ; Liu, Jian</creatorcontrib><description>The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.</description><identifier>ISSN: 0929-1903</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-022-00538-2</identifier><identifier>PMID: 36151333</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 13/95 ; 631/67/1517/1709 ; 692/699/67/1517/1709 ; Ablation ; Animals ; ATPases Associated with Diverse Cellular Activities - genetics ; ATPases Associated with Diverse Cellular Activities - metabolism ; Biomedical and Life Sciences ; Biomedicine ; Cell Cycle Proteins - genetics ; Cell growth ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - genetics ; Chromatin ; Clonal deletion ; CRISPR ; DNA-Binding Proteins - metabolism ; Drug resistance ; Female ; Gene Expression ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Gene Therapy ; Humans ; M gene ; Mice ; Mitosis ; Nocodazole ; Ovarian cancer ; Ovarian Neoplasms - pathology ; p53 Protein ; Signal Transduction ; Trans-Activators - genetics ; Tumorigenesis ; Xenografts</subject><ispartof>Cancer gene therapy, 2023-01, Vol.30 (1), p.192-208</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-99e814696c497493e88c128fc3ee83abb6734bffb587dd9fefb4930d12b29ea23</citedby><cites>FETCH-LOGICAL-c375t-99e814696c497493e88c128fc3ee83abb6734bffb587dd9fefb4930d12b29ea23</cites><orcidid>0000-0002-8969-8446 ; 0000-0002-2759-7826 ; 0000-0001-6594-5724 ; 0000-0002-4855-6417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41417-022-00538-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41417-022-00538-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36151333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Liu, Heshu</creatorcontrib><creatorcontrib>Huang, Xuying</creatorcontrib><creatorcontrib>Fan, Xiaona</creatorcontrib><creatorcontrib>Xiao, Zeru</creatorcontrib><creatorcontrib>Yan, Rui</creatorcontrib><creatorcontrib>Yao, Jiannan</creatorcontrib><creatorcontrib>An, Guanyu</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Miao, Jinwei</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><title>A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.</description><subject>13</subject><subject>13/95</subject><subject>631/67/1517/1709</subject><subject>692/699/67/1517/1709</subject><subject>Ablation</subject><subject>Animals</subject><subject>ATPases Associated with Diverse Cellular Activities - genetics</subject><subject>ATPases Associated with Diverse Cellular Activities - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Chromatin</subject><subject>Clonal deletion</subject><subject>CRISPR</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug resistance</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Gene Therapy</subject><subject>Humans</subject><subject>M gene</subject><subject>Mice</subject><subject>Mitosis</subject><subject>Nocodazole</subject><subject>Ovarian cancer</subject><subject>Ovarian Neoplasms - pathology</subject><subject>p53 Protein</subject><subject>Signal Transduction</subject><subject>Trans-Activators - genetics</subject><subject>Tumorigenesis</subject><subject>Xenografts</subject><issn>0929-1903</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLtOwzAUhi0EouXyAgzIEguLwZcktsdQ7ipiKQOT5SQnVao0KXZSwdvjkgISA9MZznf-8-tD6ITRC0aFuvQRi5gklHNCaSwU4TtozCKZkDimdBeNqeaaME3FCB14v6A0LKXYRyORsJgJIcboMcWddXPobFYDfnq9mnKSztJrju175fG8XYNrPM6hrvHKtXVVgrNd1Ta4anC7tq6yDc5tk4M7QnulrT0cb-cherm9mU3uyfT57mGSTkkuZNwRrUGxKNFJHmkZaQFK5YyrMhcAStgsS6SIsrLMYiWLQpdQZoGiBeMZ12C5OETnQ27o89aD78yy8puCtoG294ZLJhMVfiUBPfuDLtreNaFdoJJYKSllFCg-ULlrvXdQmpWrltZ9GEbNxrQZTJtg2nyZNpsWp9voPltC8XPyrTYAYgB8WDVzcL-__4n9BF0khvM</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Qun</creator><creator>Liu, Heshu</creator><creator>Huang, Xuying</creator><creator>Fan, Xiaona</creator><creator>Xiao, Zeru</creator><creator>Yan, Rui</creator><creator>Yao, Jiannan</creator><creator>An, Guanyu</creator><creator>Ge, Yang</creator><creator>Miao, Jinwei</creator><creator>Liu, Jian</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8969-8446</orcidid><orcidid>https://orcid.org/0000-0002-2759-7826</orcidid><orcidid>https://orcid.org/0000-0001-6594-5724</orcidid><orcidid>https://orcid.org/0000-0002-4855-6417</orcidid></search><sort><creationdate>20230101</creationdate><title>A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer</title><author>Liu, Qun ; Liu, Heshu ; Huang, Xuying ; Fan, Xiaona ; Xiao, Zeru ; Yan, Rui ; Yao, Jiannan ; An, Guanyu ; Ge, Yang ; Miao, Jinwei ; Liu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-99e814696c497493e88c128fc3ee83abb6734bffb587dd9fefb4930d12b29ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13</topic><topic>13/95</topic><topic>631/67/1517/1709</topic><topic>692/699/67/1517/1709</topic><topic>Ablation</topic><topic>Animals</topic><topic>ATPases Associated with Diverse Cellular Activities - genetics</topic><topic>ATPases Associated with Diverse Cellular Activities - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Chromatin</topic><topic>Clonal deletion</topic><topic>CRISPR</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug resistance</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Gene Therapy</topic><topic>Humans</topic><topic>M gene</topic><topic>Mice</topic><topic>Mitosis</topic><topic>Nocodazole</topic><topic>Ovarian cancer</topic><topic>Ovarian Neoplasms - pathology</topic><topic>p53 Protein</topic><topic>Signal Transduction</topic><topic>Trans-Activators - genetics</topic><topic>Tumorigenesis</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qun</creatorcontrib><creatorcontrib>Liu, Heshu</creatorcontrib><creatorcontrib>Huang, Xuying</creatorcontrib><creatorcontrib>Fan, Xiaona</creatorcontrib><creatorcontrib>Xiao, Zeru</creatorcontrib><creatorcontrib>Yan, Rui</creatorcontrib><creatorcontrib>Yao, Jiannan</creatorcontrib><creatorcontrib>An, Guanyu</creatorcontrib><creatorcontrib>Ge, Yang</creatorcontrib><creatorcontrib>Miao, Jinwei</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qun</au><au>Liu, Heshu</au><au>Huang, Xuying</au><au>Fan, Xiaona</au><au>Xiao, Zeru</au><au>Yan, Rui</au><au>Yao, Jiannan</au><au>An, Guanyu</au><au>Ge, Yang</au><au>Miao, Jinwei</au><au>Liu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>30</volume><issue>1</issue><spage>192</spage><epage>208</epage><pages>192-208</pages><issn>0929-1903</issn><eissn>1476-5500</eissn><abstract>The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36151333</pmid><doi>10.1038/s41417-022-00538-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8969-8446</orcidid><orcidid>https://orcid.org/0000-0002-2759-7826</orcidid><orcidid>https://orcid.org/0000-0001-6594-5724</orcidid><orcidid>https://orcid.org/0000-0002-4855-6417</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-1903
ispartof Cancer gene therapy, 2023-01, Vol.30 (1), p.192-208
issn 0929-1903
1476-5500
language eng
recordid cdi_proquest_miscellaneous_2717683756
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13
13/95
631/67/1517/1709
692/699/67/1517/1709
Ablation
Animals
ATPases Associated with Diverse Cellular Activities - genetics
ATPases Associated with Diverse Cellular Activities - metabolism
Biomedical and Life Sciences
Biomedicine
Cell Cycle Proteins - genetics
Cell growth
Cell Line, Tumor
Cell proliferation
Cell Proliferation - genetics
Chromatin
Clonal deletion
CRISPR
DNA-Binding Proteins - metabolism
Drug resistance
Female
Gene Expression
Gene Expression Regulation, Neoplastic
Gene regulation
Gene Therapy
Humans
M gene
Mice
Mitosis
Nocodazole
Ovarian cancer
Ovarian Neoplasms - pathology
p53 Protein
Signal Transduction
Trans-Activators - genetics
Tumorigenesis
Xenografts
title A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20targetable%20MYBL2-ATAD2%20axis%20governs%20cell%20proliferation%20in%20ovarian%20cancer&rft.jtitle=Cancer%20gene%20therapy&rft.au=Liu,%20Qun&rft.date=2023-01-01&rft.volume=30&rft.issue=1&rft.spage=192&rft.epage=208&rft.pages=192-208&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-022-00538-2&rft_dat=%3Cproquest_cross%3E2765887774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765887774&rft_id=info:pmid/36151333&rfr_iscdi=true