Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation

Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2022-11, Vol.144, p.111305-111305, Article 111305
Hauptverfasser: Gutmark, Ephraim, Anand, Vijay, Wheeler, Aaron, Zahn, Alexander, Cavari, Yuval, Eluk, Tal, Hay, Maor, Katoshevski, David, Gutmark-Little, Iris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111305
container_issue
container_start_page 111305
container_title Journal of biomechanics
container_volume 144
creator Gutmark, Ephraim
Anand, Vijay
Wheeler, Aaron
Zahn, Alexander
Cavari, Yuval
Eluk, Tal
Hay, Maor
Katoshevski, David
Gutmark-Little, Iris
description Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.
doi_str_mv 10.1016/j.jbiomech.2022.111305
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717683457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929022003463</els_id><sourcerecordid>2730670181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2qlboFvkJlqRcu2fpf7ORWSqFFApUDnC3HnoCjxN7azkrc-tEx3fbSC6eZw2_ezJuH0EdKtpRQ-XnaToOPC9jHLSOMbSmlnLRv0IZ2ijeMd-Qt2hDCaNOznrxHH3KeCCFKqH6Dfn-DJYZckik-BhxHvKx2zTj7ZZ1NKNjOYJIJFrAP2OCvEOxjcxMdzHjNPjxgY-Oai7f40sPsmqtQ4KGqgcO1TWa3znWBSU_4FlJVzn4PeA-h-PnPymP0bjRzhpO_9QjdX17cnf9orn9-vzo_u24sV7w0yo2tG6hpWd92UggjOFXgej5QYRV1oxTODG3retERaakdei6FYf3YAjhp-RE6PejuUvy1Qi568dnCXE1CNaCZokp2XLSqop_-Q6e4plCvqxQnUhHa0UrJA2VTzDnBqHfJL9WopkS_BKMn_S8Y_RKMPgRTB78cBqHa3XtIOltf3wrOJ7BFu-hfk3gGYH6cWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730670181</pqid></control><display><type>article</type><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</creator><creatorcontrib>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</creatorcontrib><description>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2022.111305</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustics ; Air flow ; Chronic obstructive pulmonary disease ; High frequency airway clearance ; IPV ; Mucokinesis ; Mucus ; Patients ; Pulsed flow ; Sensors ; Sound field ; Ventilation ; Viscosity</subject><ispartof>Journal of biomechanics, 2022-11, Vol.144, p.111305-111305, Article 111305</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</citedby><cites>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</cites><orcidid>0000-0003-0135-4516 ; 0000-0003-0312-2591 ; 0000-0001-7816-4257 ; 0000-0002-8224-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2730670181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Gutmark, Ephraim</creatorcontrib><creatorcontrib>Anand, Vijay</creatorcontrib><creatorcontrib>Wheeler, Aaron</creatorcontrib><creatorcontrib>Zahn, Alexander</creatorcontrib><creatorcontrib>Cavari, Yuval</creatorcontrib><creatorcontrib>Eluk, Tal</creatorcontrib><creatorcontrib>Hay, Maor</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><creatorcontrib>Gutmark-Little, Iris</creatorcontrib><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><title>Journal of biomechanics</title><description>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</description><subject>Acoustics</subject><subject>Air flow</subject><subject>Chronic obstructive pulmonary disease</subject><subject>High frequency airway clearance</subject><subject>IPV</subject><subject>Mucokinesis</subject><subject>Mucus</subject><subject>Patients</subject><subject>Pulsed flow</subject><subject>Sensors</subject><subject>Sound field</subject><subject>Ventilation</subject><subject>Viscosity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P3DAQxa2qlboFvkJlqRcu2fpf7ORWSqFFApUDnC3HnoCjxN7azkrc-tEx3fbSC6eZw2_ezJuH0EdKtpRQ-XnaToOPC9jHLSOMbSmlnLRv0IZ2ijeMd-Qt2hDCaNOznrxHH3KeCCFKqH6Dfn-DJYZckik-BhxHvKx2zTj7ZZ1NKNjOYJIJFrAP2OCvEOxjcxMdzHjNPjxgY-Oai7f40sPsmqtQ4KGqgcO1TWa3znWBSU_4FlJVzn4PeA-h-PnPymP0bjRzhpO_9QjdX17cnf9orn9-vzo_u24sV7w0yo2tG6hpWd92UggjOFXgej5QYRV1oxTODG3retERaakdei6FYf3YAjhp-RE6PejuUvy1Qi568dnCXE1CNaCZokp2XLSqop_-Q6e4plCvqxQnUhHa0UrJA2VTzDnBqHfJL9WopkS_BKMn_S8Y_RKMPgRTB78cBqHa3XtIOltf3wrOJ7BFu-hfk3gGYH6cWQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Gutmark, Ephraim</creator><creator>Anand, Vijay</creator><creator>Wheeler, Aaron</creator><creator>Zahn, Alexander</creator><creator>Cavari, Yuval</creator><creator>Eluk, Tal</creator><creator>Hay, Maor</creator><creator>Katoshevski, David</creator><creator>Gutmark-Little, Iris</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0135-4516</orcidid><orcidid>https://orcid.org/0000-0003-0312-2591</orcidid><orcidid>https://orcid.org/0000-0001-7816-4257</orcidid><orcidid>https://orcid.org/0000-0002-8224-7060</orcidid></search><sort><creationdate>202211</creationdate><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><author>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Air flow</topic><topic>Chronic obstructive pulmonary disease</topic><topic>High frequency airway clearance</topic><topic>IPV</topic><topic>Mucokinesis</topic><topic>Mucus</topic><topic>Patients</topic><topic>Pulsed flow</topic><topic>Sensors</topic><topic>Sound field</topic><topic>Ventilation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutmark, Ephraim</creatorcontrib><creatorcontrib>Anand, Vijay</creatorcontrib><creatorcontrib>Wheeler, Aaron</creatorcontrib><creatorcontrib>Zahn, Alexander</creatorcontrib><creatorcontrib>Cavari, Yuval</creatorcontrib><creatorcontrib>Eluk, Tal</creatorcontrib><creatorcontrib>Hay, Maor</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><creatorcontrib>Gutmark-Little, Iris</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutmark, Ephraim</au><au>Anand, Vijay</au><au>Wheeler, Aaron</au><au>Zahn, Alexander</au><au>Cavari, Yuval</au><au>Eluk, Tal</au><au>Hay, Maor</au><au>Katoshevski, David</au><au>Gutmark-Little, Iris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</atitle><jtitle>Journal of biomechanics</jtitle><date>2022-11</date><risdate>2022</risdate><volume>144</volume><spage>111305</spage><epage>111305</epage><pages>111305-111305</pages><artnum>111305</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2022.111305</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0135-4516</orcidid><orcidid>https://orcid.org/0000-0003-0312-2591</orcidid><orcidid>https://orcid.org/0000-0001-7816-4257</orcidid><orcidid>https://orcid.org/0000-0002-8224-7060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2022-11, Vol.144, p.111305-111305, Article 111305
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_2717683457
source ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Acoustics
Air flow
Chronic obstructive pulmonary disease
High frequency airway clearance
IPV
Mucokinesis
Mucus
Patients
Pulsed flow
Sensors
Sound field
Ventilation
Viscosity
title Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20mucus%20simulant%20clearance%20in%20a%20Bench-Model%20using%20acoustic%20Field-Integrated%20Intrapulmonary%20Percussive%20ventilation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Gutmark,%20Ephraim&rft.date=2022-11&rft.volume=144&rft.spage=111305&rft.epage=111305&rft.pages=111305-111305&rft.artnum=111305&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2022.111305&rft_dat=%3Cproquest_cross%3E2730670181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730670181&rft_id=info:pmid/&rft_els_id=S0021929022003463&rfr_iscdi=true