Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation
Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly a...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2022-11, Vol.144, p.111305-111305, Article 111305 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111305 |
---|---|
container_issue | |
container_start_page | 111305 |
container_title | Journal of biomechanics |
container_volume | 144 |
creator | Gutmark, Ephraim Anand, Vijay Wheeler, Aaron Zahn, Alexander Cavari, Yuval Eluk, Tal Hay, Maor Katoshevski, David Gutmark-Little, Iris |
description | Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour. |
doi_str_mv | 10.1016/j.jbiomech.2022.111305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2717683457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929022003463</els_id><sourcerecordid>2730670181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2qlboFvkJlqRcu2fpf7ORWSqFFApUDnC3HnoCjxN7azkrc-tEx3fbSC6eZw2_ezJuH0EdKtpRQ-XnaToOPC9jHLSOMbSmlnLRv0IZ2ijeMd-Qt2hDCaNOznrxHH3KeCCFKqH6Dfn-DJYZckik-BhxHvKx2zTj7ZZ1NKNjOYJIJFrAP2OCvEOxjcxMdzHjNPjxgY-Oai7f40sPsmqtQ4KGqgcO1TWa3znWBSU_4FlJVzn4PeA-h-PnPymP0bjRzhpO_9QjdX17cnf9orn9-vzo_u24sV7w0yo2tG6hpWd92UggjOFXgej5QYRV1oxTODG3retERaakdei6FYf3YAjhp-RE6PejuUvy1Qi568dnCXE1CNaCZokp2XLSqop_-Q6e4plCvqxQnUhHa0UrJA2VTzDnBqHfJL9WopkS_BKMn_S8Y_RKMPgRTB78cBqHa3XtIOltf3wrOJ7BFu-hfk3gGYH6cWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730670181</pqid></control><display><type>article</type><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</creator><creatorcontrib>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</creatorcontrib><description>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2022.111305</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustics ; Air flow ; Chronic obstructive pulmonary disease ; High frequency airway clearance ; IPV ; Mucokinesis ; Mucus ; Patients ; Pulsed flow ; Sensors ; Sound field ; Ventilation ; Viscosity</subject><ispartof>Journal of biomechanics, 2022-11, Vol.144, p.111305-111305, Article 111305</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</citedby><cites>FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</cites><orcidid>0000-0003-0135-4516 ; 0000-0003-0312-2591 ; 0000-0001-7816-4257 ; 0000-0002-8224-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2730670181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Gutmark, Ephraim</creatorcontrib><creatorcontrib>Anand, Vijay</creatorcontrib><creatorcontrib>Wheeler, Aaron</creatorcontrib><creatorcontrib>Zahn, Alexander</creatorcontrib><creatorcontrib>Cavari, Yuval</creatorcontrib><creatorcontrib>Eluk, Tal</creatorcontrib><creatorcontrib>Hay, Maor</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><creatorcontrib>Gutmark-Little, Iris</creatorcontrib><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><title>Journal of biomechanics</title><description>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</description><subject>Acoustics</subject><subject>Air flow</subject><subject>Chronic obstructive pulmonary disease</subject><subject>High frequency airway clearance</subject><subject>IPV</subject><subject>Mucokinesis</subject><subject>Mucus</subject><subject>Patients</subject><subject>Pulsed flow</subject><subject>Sensors</subject><subject>Sound field</subject><subject>Ventilation</subject><subject>Viscosity</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P3DAQxa2qlboFvkJlqRcu2fpf7ORWSqFFApUDnC3HnoCjxN7azkrc-tEx3fbSC6eZw2_ezJuH0EdKtpRQ-XnaToOPC9jHLSOMbSmlnLRv0IZ2ijeMd-Qt2hDCaNOznrxHH3KeCCFKqH6Dfn-DJYZckik-BhxHvKx2zTj7ZZ1NKNjOYJIJFrAP2OCvEOxjcxMdzHjNPjxgY-Oai7f40sPsmqtQ4KGqgcO1TWa3znWBSU_4FlJVzn4PeA-h-PnPymP0bjRzhpO_9QjdX17cnf9orn9-vzo_u24sV7w0yo2tG6hpWd92UggjOFXgej5QYRV1oxTODG3retERaakdei6FYf3YAjhp-RE6PejuUvy1Qi568dnCXE1CNaCZokp2XLSqop_-Q6e4plCvqxQnUhHa0UrJA2VTzDnBqHfJL9WopkS_BKMn_S8Y_RKMPgRTB78cBqHa3XtIOltf3wrOJ7BFu-hfk3gGYH6cWQ</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Gutmark, Ephraim</creator><creator>Anand, Vijay</creator><creator>Wheeler, Aaron</creator><creator>Zahn, Alexander</creator><creator>Cavari, Yuval</creator><creator>Eluk, Tal</creator><creator>Hay, Maor</creator><creator>Katoshevski, David</creator><creator>Gutmark-Little, Iris</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0135-4516</orcidid><orcidid>https://orcid.org/0000-0003-0312-2591</orcidid><orcidid>https://orcid.org/0000-0001-7816-4257</orcidid><orcidid>https://orcid.org/0000-0002-8224-7060</orcidid></search><sort><creationdate>202211</creationdate><title>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</title><author>Gutmark, Ephraim ; Anand, Vijay ; Wheeler, Aaron ; Zahn, Alexander ; Cavari, Yuval ; Eluk, Tal ; Hay, Maor ; Katoshevski, David ; Gutmark-Little, Iris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7df5db1a52958644a4317ed93b14c71df64dab55d94806c1cb9364a29f5eed6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Air flow</topic><topic>Chronic obstructive pulmonary disease</topic><topic>High frequency airway clearance</topic><topic>IPV</topic><topic>Mucokinesis</topic><topic>Mucus</topic><topic>Patients</topic><topic>Pulsed flow</topic><topic>Sensors</topic><topic>Sound field</topic><topic>Ventilation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutmark, Ephraim</creatorcontrib><creatorcontrib>Anand, Vijay</creatorcontrib><creatorcontrib>Wheeler, Aaron</creatorcontrib><creatorcontrib>Zahn, Alexander</creatorcontrib><creatorcontrib>Cavari, Yuval</creatorcontrib><creatorcontrib>Eluk, Tal</creatorcontrib><creatorcontrib>Hay, Maor</creatorcontrib><creatorcontrib>Katoshevski, David</creatorcontrib><creatorcontrib>Gutmark-Little, Iris</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutmark, Ephraim</au><au>Anand, Vijay</au><au>Wheeler, Aaron</au><au>Zahn, Alexander</au><au>Cavari, Yuval</au><au>Eluk, Tal</au><au>Hay, Maor</au><au>Katoshevski, David</au><au>Gutmark-Little, Iris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation</atitle><jtitle>Journal of biomechanics</jtitle><date>2022-11</date><risdate>2022</risdate><volume>144</volume><spage>111305</spage><epage>111305</epage><pages>111305-111305</pages><artnum>111305</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Intrapulmonary Percussive Ventilation (IPV) is a high-frequency airway clearance technique used to help in mucus transport for mechanically ventilated and unventilated patients. Despite the many years of usage, this technique does not provide clear evidence of its intended efficacy. This is mainly attributable to the lack of in vitro observations that show “mucokinesis” towards the direction of the mouth. In the current manuscript, we demonstrate and subsequently propose a mechanism that details the movement of a mucus simulant in the proximal (towards the mouthpiece) direction. Towards this end, a novel method utilizing a high-frequency acoustic field in addition to the conventional air pulsations brought forth by traditional IPV is proposed. Under these conditions, at certain parameter settings, it is shown that the simulant is broken down into much smaller parts and subsequently pushed in the upstream direction gradually over a period of half-hour.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jbiomech.2022.111305</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0135-4516</orcidid><orcidid>https://orcid.org/0000-0003-0312-2591</orcidid><orcidid>https://orcid.org/0000-0001-7816-4257</orcidid><orcidid>https://orcid.org/0000-0002-8224-7060</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2022-11, Vol.144, p.111305-111305, Article 111305 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_2717683457 |
source | ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Acoustics Air flow Chronic obstructive pulmonary disease High frequency airway clearance IPV Mucokinesis Mucus Patients Pulsed flow Sensors Sound field Ventilation Viscosity |
title | Demonstration of mucus simulant clearance in a Bench-Model using acoustic Field-Integrated Intrapulmonary Percussive ventilation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20mucus%20simulant%20clearance%20in%20a%20Bench-Model%20using%20acoustic%20Field-Integrated%20Intrapulmonary%20Percussive%20ventilation&rft.jtitle=Journal%20of%20biomechanics&rft.au=Gutmark,%20Ephraim&rft.date=2022-11&rft.volume=144&rft.spage=111305&rft.epage=111305&rft.pages=111305-111305&rft.artnum=111305&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2022.111305&rft_dat=%3Cproquest_cross%3E2730670181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730670181&rft_id=info:pmid/&rft_els_id=S0021929022003463&rfr_iscdi=true |