Hybrid wavelet-support vector classification of waveforms

The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2002-11, Vol.148 (2), p.375-400
Hauptverfasser: Strauss, Daniel J., Steidl, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2
container_start_page 375
container_title Journal of computational and applied mathematics
container_volume 148
creator Strauss, Daniel J.
Steidl, Gabriele
description The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.
doi_str_mv 10.1016/S0377-0427(02)00557-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27173045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702005575</els_id><sourcerecordid>27173045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKEbRRfVe9OkaVcigy8YcOHsQ5oHRDpNTToj8-_tPNClq7v5zjncj5BLhDsELO8_oBAiB0bFDdBbAM5Fzo_IBCtR5yhEdUwmv8gpOUvpEwDKGtmE1K-bJnqTfau1be2Qp1Xfhzhka6uHEDPdqpS881oNPnRZcDvQhbhM5-TEqTbZi8OdksXz02L2ms_fX95mj_NcF2U15AahrhGLygF1nJWVYZY2ClG7BilWYDQ0dWNq5FpVDCxTWpUOSsuahppiSq73tX0MXyubBrn0Sdu2VZ0NqySpQFEA4yPI96COIaVoneyjX6q4kQhy60nuPMmtBAlU7jzJbe7qMKCSVq2LqtM-_YUZRwSGI_ew5-z47NrbKJP2ttPW-DjKkib4f5Z-AGvVfM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27173045</pqid></control><display><type>article</type><title>Hybrid wavelet-support vector classification of waveforms</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Strauss, Daniel J. ; Steidl, Gabriele</creator><creatorcontrib>Strauss, Daniel J. ; Steidl, Gabriele</creatorcontrib><description>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00557-5</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adapted filter banks ; Applied sciences ; Exact sciences and technology ; Fourier analysis ; Frames ; Mathematical programming ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Operational research and scientific management ; Operational research. Management science ; Radial basis functions ; Reproducing kernel Hilbert spaces ; Sciences and techniques of general use ; Support vector machines ; Waveform recognition ; Wavelets</subject><ispartof>Journal of computational and applied mathematics, 2002-11, Vol.148 (2), p.375-400</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</citedby><cites>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042702005575$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14511041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strauss, Daniel J.</creatorcontrib><creatorcontrib>Steidl, Gabriele</creatorcontrib><title>Hybrid wavelet-support vector classification of waveforms</title><title>Journal of computational and applied mathematics</title><description>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</description><subject>Adapted filter banks</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Frames</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Radial basis functions</subject><subject>Reproducing kernel Hilbert spaces</subject><subject>Sciences and techniques of general use</subject><subject>Support vector machines</subject><subject>Waveform recognition</subject><subject>Wavelets</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKEbRRfVe9OkaVcigy8YcOHsQ5oHRDpNTToj8-_tPNClq7v5zjncj5BLhDsELO8_oBAiB0bFDdBbAM5Fzo_IBCtR5yhEdUwmv8gpOUvpEwDKGtmE1K-bJnqTfau1be2Qp1Xfhzhka6uHEDPdqpS881oNPnRZcDvQhbhM5-TEqTbZi8OdksXz02L2ms_fX95mj_NcF2U15AahrhGLygF1nJWVYZY2ClG7BilWYDQ0dWNq5FpVDCxTWpUOSsuahppiSq73tX0MXyubBrn0Sdu2VZ0NqySpQFEA4yPI96COIaVoneyjX6q4kQhy60nuPMmtBAlU7jzJbe7qMKCSVq2LqtM-_YUZRwSGI_ew5-z47NrbKJP2ttPW-DjKkib4f5Z-AGvVfM8</recordid><startdate>20021115</startdate><enddate>20021115</enddate><creator>Strauss, Daniel J.</creator><creator>Steidl, Gabriele</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20021115</creationdate><title>Hybrid wavelet-support vector classification of waveforms</title><author>Strauss, Daniel J. ; Steidl, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adapted filter banks</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Frames</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Radial basis functions</topic><topic>Reproducing kernel Hilbert spaces</topic><topic>Sciences and techniques of general use</topic><topic>Support vector machines</topic><topic>Waveform recognition</topic><topic>Wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauss, Daniel J.</creatorcontrib><creatorcontrib>Steidl, Gabriele</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauss, Daniel J.</au><au>Steidl, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid wavelet-support vector classification of waveforms</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2002-11-15</date><risdate>2002</risdate><volume>148</volume><issue>2</issue><spage>375</spage><epage>400</epage><pages>375-400</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00557-5</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2002-11, Vol.148 (2), p.375-400
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_27173045
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Adapted filter banks
Applied sciences
Exact sciences and technology
Fourier analysis
Frames
Mathematical programming
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Operational research and scientific management
Operational research. Management science
Radial basis functions
Reproducing kernel Hilbert spaces
Sciences and techniques of general use
Support vector machines
Waveform recognition
Wavelets
title Hybrid wavelet-support vector classification of waveforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20wavelet-support%20vector%20classification%20of%20waveforms&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Strauss,%20Daniel%20J.&rft.date=2002-11-15&rft.volume=148&rft.issue=2&rft.spage=375&rft.epage=400&rft.pages=375-400&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00557-5&rft_dat=%3Cproquest_cross%3E27173045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27173045&rft_id=info:pmid/&rft_els_id=S0377042702005575&rfr_iscdi=true