Hybrid wavelet-support vector classification of waveforms
The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybri...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2002-11, Vol.148 (2), p.375-400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 2 |
container_start_page | 375 |
container_title | Journal of computational and applied mathematics |
container_volume | 148 |
creator | Strauss, Daniel J. Steidl, Gabriele |
description | The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand.
We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques.
We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step. |
doi_str_mv | 10.1016/S0377-0427(02)00557-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27173045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042702005575</els_id><sourcerecordid>27173045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BKEbRRfVe9OkaVcigy8YcOHsQ5oHRDpNTToj8-_tPNClq7v5zjncj5BLhDsELO8_oBAiB0bFDdBbAM5Fzo_IBCtR5yhEdUwmv8gpOUvpEwDKGtmE1K-bJnqTfau1be2Qp1Xfhzhka6uHEDPdqpS881oNPnRZcDvQhbhM5-TEqTbZi8OdksXz02L2ms_fX95mj_NcF2U15AahrhGLygF1nJWVYZY2ClG7BilWYDQ0dWNq5FpVDCxTWpUOSsuahppiSq73tX0MXyubBrn0Sdu2VZ0NqySpQFEA4yPI96COIaVoneyjX6q4kQhy60nuPMmtBAlU7jzJbe7qMKCSVq2LqtM-_YUZRwSGI_ew5-z47NrbKJP2ttPW-DjKkib4f5Z-AGvVfM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27173045</pqid></control><display><type>article</type><title>Hybrid wavelet-support vector classification of waveforms</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Strauss, Daniel J. ; Steidl, Gabriele</creator><creatorcontrib>Strauss, Daniel J. ; Steidl, Gabriele</creatorcontrib><description>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand.
We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques.
We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(02)00557-5</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adapted filter banks ; Applied sciences ; Exact sciences and technology ; Fourier analysis ; Frames ; Mathematical programming ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Operational research and scientific management ; Operational research. Management science ; Radial basis functions ; Reproducing kernel Hilbert spaces ; Sciences and techniques of general use ; Support vector machines ; Waveform recognition ; Wavelets</subject><ispartof>Journal of computational and applied mathematics, 2002-11, Vol.148 (2), p.375-400</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</citedby><cites>FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042702005575$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14511041$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strauss, Daniel J.</creatorcontrib><creatorcontrib>Steidl, Gabriele</creatorcontrib><title>Hybrid wavelet-support vector classification of waveforms</title><title>Journal of computational and applied mathematics</title><description>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand.
We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques.
We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</description><subject>Adapted filter banks</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Frames</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Radial basis functions</subject><subject>Reproducing kernel Hilbert spaces</subject><subject>Sciences and techniques of general use</subject><subject>Support vector machines</subject><subject>Waveform recognition</subject><subject>Wavelets</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BKEbRRfVe9OkaVcigy8YcOHsQ5oHRDpNTToj8-_tPNClq7v5zjncj5BLhDsELO8_oBAiB0bFDdBbAM5Fzo_IBCtR5yhEdUwmv8gpOUvpEwDKGtmE1K-bJnqTfau1be2Qp1Xfhzhka6uHEDPdqpS881oNPnRZcDvQhbhM5-TEqTbZi8OdksXz02L2ms_fX95mj_NcF2U15AahrhGLygF1nJWVYZY2ClG7BilWYDQ0dWNq5FpVDCxTWpUOSsuahppiSq73tX0MXyubBrn0Sdu2VZ0NqySpQFEA4yPI96COIaVoneyjX6q4kQhy60nuPMmtBAlU7jzJbe7qMKCSVq2LqtM-_YUZRwSGI_ew5-z47NrbKJP2ttPW-DjKkib4f5Z-AGvVfM8</recordid><startdate>20021115</startdate><enddate>20021115</enddate><creator>Strauss, Daniel J.</creator><creator>Steidl, Gabriele</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20021115</creationdate><title>Hybrid wavelet-support vector classification of waveforms</title><author>Strauss, Daniel J. ; Steidl, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d10991138f02f5468d4e2ba11cfb12180dc0b9bd915ca840e4aca6f06e4bb2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adapted filter banks</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Frames</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Radial basis functions</topic><topic>Reproducing kernel Hilbert spaces</topic><topic>Sciences and techniques of general use</topic><topic>Support vector machines</topic><topic>Waveform recognition</topic><topic>Wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauss, Daniel J.</creatorcontrib><creatorcontrib>Steidl, Gabriele</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauss, Daniel J.</au><au>Steidl, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid wavelet-support vector classification of waveforms</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2002-11-15</date><risdate>2002</risdate><volume>148</volume><issue>2</issue><spage>375</spage><epage>400</epage><pages>375-400</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>The support vector machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand.
We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and hard margin SVMs for waveform classification. The adaptation of the wavelet decompositions is tailored for hard margin SV classifiers with radial basis functions as kernels. It allows the optimization of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques.
We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of hard margin SVMs can significantly be improved by our adapted preprocessing step.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(02)00557-5</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2002-11, Vol.148 (2), p.375-400 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27173045 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adapted filter banks Applied sciences Exact sciences and technology Fourier analysis Frames Mathematical programming Mathematics Numerical analysis Numerical analysis. Scientific computation Operational research and scientific management Operational research. Management science Radial basis functions Reproducing kernel Hilbert spaces Sciences and techniques of general use Support vector machines Waveform recognition Wavelets |
title | Hybrid wavelet-support vector classification of waveforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20wavelet-support%20vector%20classification%20of%20waveforms&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Strauss,%20Daniel%20J.&rft.date=2002-11-15&rft.volume=148&rft.issue=2&rft.spage=375&rft.epage=400&rft.pages=375-400&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(02)00557-5&rft_dat=%3Cproquest_cross%3E27173045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27173045&rft_id=info:pmid/&rft_els_id=S0377042702005575&rfr_iscdi=true |