Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units

The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn–Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2022-10, Vol.18 (10), p.6010-6020
Hauptverfasser: Laqua, Henryk, Dietschreit, Johannes C. B., Kussmann, Jörg, Ochsenfeld, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6020
container_issue 10
container_start_page 6010
container_title Journal of chemical theory and computation
container_volume 18
creator Laqua, Henryk
Dietschreit, Johannes C. B.
Kussmann, Jörg
Ochsenfeld, Christian
description The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn–Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminumerical exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H., Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16, 1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann, J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely, resulting in a highly efficient electronic structure theory method, allowing for fast ab initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed concurrently on a single node, leading to a greatly increased utilization of the available hardwareespecially when combined with graphics processing unit accelerationimproving the overall throughput by up to another 5 times in this way. With all of those optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine–thymine and guanine–cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to apply these new methods to practical problems.
doi_str_mv 10.1021/acs.jctc.2c00509
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716943099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724311053</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-bfadae281fd3fdd052e48701315b1252b837dae1223f53e2f5d2039f0954221d3</originalsourceid><addsrcrecordid>eNp1kclOwzAQhiMEEuudoyUuHEjxErfNsWKtBAKxnCPHHlNXiV1sRyKvxRPi0MIBiZNHnm_mn5k_y44JHhFMybmQYbSUUY6oxJjjcivbI7wo83JMx9u_MZnuZvshLDFmrKBsL_ucSQkNeBGNfUO3fe2NQpdgg4k9uu6sjMZZ0aCXBTjfo3vXgOwa4dFlb0VrZEDPpk0fAxZQ3aNnaI3tWvBGprK5jfDmv7Nn6AmCa7ohzp3O4wLyuQIbB6XZauXdh2k3pLAK3XixWgwCj95JCGGY79WaGA6zHS2aAEeb9yB7vb56ubjN7x5u5hezu1zQCYl5rYUSQKdEK6aVwpxCMZ1gwgivCeW0nrJJAgilTHMGVHNFMSs1LnlBKVHsIDtd902jvXcQYtWakI7VCAuuC1VSGZcFw2WZ0JM_6NJ1Pt1toGjBCMGcJQqvKeldCB50tfJpZd9XBFeDiVUysRpMrDYmppKzdcl35qfnv_gXv-GkQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724311053</pqid></control><display><type>article</type><title>Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units</title><source>ACS Publications</source><creator>Laqua, Henryk ; Dietschreit, Johannes C. B. ; Kussmann, Jörg ; Ochsenfeld, Christian</creator><creatorcontrib>Laqua, Henryk ; Dietschreit, Johannes C. B. ; Kussmann, Jörg ; Ochsenfeld, Christian</creatorcontrib><description>The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn–Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminumerical exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H., Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16, 1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann, J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely, resulting in a highly efficient electronic structure theory method, allowing for fast ab initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed concurrently on a single node, leading to a greatly increased utilization of the available hardwareespecially when combined with graphics processing unit accelerationimproving the overall throughput by up to another 5 times in this way. With all of those optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine–thymine and guanine–cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to apply these new methods to practical problems.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00509</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Adenine ; Approximation ; Bonding strength ; Density functional theory ; Dynamic structural analysis ; Electronic structure ; Evaluation ; Graphics processing units ; Hydrogen bonds ; Mathematical analysis ; Molecular dynamics ; Quantum Electronic Structure ; Self consistent fields ; Simulation ; Thymine</subject><ispartof>Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6010-6020</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Oct 11, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a271t-bfadae281fd3fdd052e48701315b1252b837dae1223f53e2f5d2039f0954221d3</citedby><cites>FETCH-LOGICAL-a271t-bfadae281fd3fdd052e48701315b1252b837dae1223f53e2f5d2039f0954221d3</cites><orcidid>0000-0002-4724-8551 ; 0000-0002-4189-6558 ; 0000-0002-5840-0002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00509$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00509$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Laqua, Henryk</creatorcontrib><creatorcontrib>Dietschreit, Johannes C. B.</creatorcontrib><creatorcontrib>Kussmann, Jörg</creatorcontrib><creatorcontrib>Ochsenfeld, Christian</creatorcontrib><title>Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn–Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminumerical exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H., Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16, 1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann, J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely, resulting in a highly efficient electronic structure theory method, allowing for fast ab initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed concurrently on a single node, leading to a greatly increased utilization of the available hardwareespecially when combined with graphics processing unit accelerationimproving the overall throughput by up to another 5 times in this way. With all of those optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine–thymine and guanine–cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to apply these new methods to practical problems.</description><subject>Adenine</subject><subject>Approximation</subject><subject>Bonding strength</subject><subject>Density functional theory</subject><subject>Dynamic structural analysis</subject><subject>Electronic structure</subject><subject>Evaluation</subject><subject>Graphics processing units</subject><subject>Hydrogen bonds</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Quantum Electronic Structure</subject><subject>Self consistent fields</subject><subject>Simulation</subject><subject>Thymine</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kclOwzAQhiMEEuudoyUuHEjxErfNsWKtBAKxnCPHHlNXiV1sRyKvxRPi0MIBiZNHnm_mn5k_y44JHhFMybmQYbSUUY6oxJjjcivbI7wo83JMx9u_MZnuZvshLDFmrKBsL_ucSQkNeBGNfUO3fe2NQpdgg4k9uu6sjMZZ0aCXBTjfo3vXgOwa4dFlb0VrZEDPpk0fAxZQ3aNnaI3tWvBGprK5jfDmv7Nn6AmCa7ohzp3O4wLyuQIbB6XZauXdh2k3pLAK3XixWgwCj95JCGGY79WaGA6zHS2aAEeb9yB7vb56ubjN7x5u5hezu1zQCYl5rYUSQKdEK6aVwpxCMZ1gwgivCeW0nrJJAgilTHMGVHNFMSs1LnlBKVHsIDtd902jvXcQYtWakI7VCAuuC1VSGZcFw2WZ0JM_6NJ1Pt1toGjBCMGcJQqvKeldCB50tfJpZd9XBFeDiVUysRpMrDYmppKzdcl35qfnv_gXv-GkQg</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Laqua, Henryk</creator><creator>Dietschreit, Johannes C. B.</creator><creator>Kussmann, Jörg</creator><creator>Ochsenfeld, Christian</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4724-8551</orcidid><orcidid>https://orcid.org/0000-0002-4189-6558</orcidid><orcidid>https://orcid.org/0000-0002-5840-0002</orcidid></search><sort><creationdate>20221011</creationdate><title>Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units</title><author>Laqua, Henryk ; Dietschreit, Johannes C. B. ; Kussmann, Jörg ; Ochsenfeld, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-bfadae281fd3fdd052e48701315b1252b837dae1223f53e2f5d2039f0954221d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenine</topic><topic>Approximation</topic><topic>Bonding strength</topic><topic>Density functional theory</topic><topic>Dynamic structural analysis</topic><topic>Electronic structure</topic><topic>Evaluation</topic><topic>Graphics processing units</topic><topic>Hydrogen bonds</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Quantum Electronic Structure</topic><topic>Self consistent fields</topic><topic>Simulation</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laqua, Henryk</creatorcontrib><creatorcontrib>Dietschreit, Johannes C. B.</creatorcontrib><creatorcontrib>Kussmann, Jörg</creatorcontrib><creatorcontrib>Ochsenfeld, Christian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laqua, Henryk</au><au>Dietschreit, Johannes C. B.</au><au>Kussmann, Jörg</au><au>Ochsenfeld, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>6010</spage><epage>6020</epage><pages>6010-6020</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The computationally very demanding evaluation of the 4-center-2-electron (4c2e) integrals and their respective integral derivatives typically represents the major bottleneck within hybrid Kohn–Sham density functional theory molecular dynamics simulations. Building upon our previous works on seminumerical exact-exchange (sn-LinK) [Laqua, H., Thompsons, T. H., Kussmann, J., Ochsenfeld, C., J. Chem. Theory Comput. 2020, 16, 1465] and resolution-of-the-identity Coulomb (RI-J) [Kussmann, J., Laqua, H., Ochsenfeld, C., J. Chem. Theory Comput. 2021, 17, 1512], the expensive 4c2e integral evaluation can be avoided entirely, resulting in a highly efficient electronic structure theory method, allowing for fast ab initio molecular dynamics (AIMD) simulations even with large basis sets. Moreover, we propose to combine the final self-consistent field (SCF) step with the subsequent nuclear forces evaluation, providing the forces at virtually no additional cost after a converged SCF calculation, reducing the total runtime of an AIMD simulation by about another 25%. In addition, multiple independent MD trajectories can be computed concurrently on a single node, leading to a greatly increased utilization of the available hardwareespecially when combined with graphics processing unit accelerationimproving the overall throughput by up to another 5 times in this way. With all of those optimizations combined, our proposed method provides nearly 3 orders of magnitude faster execution times than traditional 4c2e integral-based methods. To demonstrate the practical utility of the approach, quantum-mechanical/molecular-mechanical dynamics simulations on double-stranded DNA were performed, investigating the relative hydrogen bond strength between adenine–thymine and guanine–cytosine base pairs. In addition, this illustrative application also contains a general accuracy assessment of the introduced approximations (integration grids, resolution-of-the-identity) within AIMD simulations, serving as a protocol on how to apply these new methods to practical problems.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jctc.2c00509</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4724-8551</orcidid><orcidid>https://orcid.org/0000-0002-4189-6558</orcidid><orcidid>https://orcid.org/0000-0002-5840-0002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2022-10, Vol.18 (10), p.6010-6020
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2716943099
source ACS Publications
subjects Adenine
Approximation
Bonding strength
Density functional theory
Dynamic structural analysis
Electronic structure
Evaluation
Graphics processing units
Hydrogen bonds
Mathematical analysis
Molecular dynamics
Quantum Electronic Structure
Self consistent fields
Simulation
Thymine
title Accelerating Hybrid Density Functional Theory Molecular Dynamics Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Hybrid%20Density%20Functional%20Theory%20Molecular%20Dynamics%20Simulations%20by%20Seminumerical%20Integration,%20Resolution-of-the-Identity%20Approximation,%20and%20Graphics%20Processing%20Units&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Laqua,%20Henryk&rft.date=2022-10-11&rft.volume=18&rft.issue=10&rft.spage=6010&rft.epage=6020&rft.pages=6010-6020&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00509&rft_dat=%3Cproquest_cross%3E2724311053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724311053&rft_id=info:pmid/&rfr_iscdi=true