A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation
The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K + or Na + . The conformation transformation caused by th...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2022-11, Vol.414 (27), p.7923-7933 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7933 |
---|---|
container_issue | 27 |
container_start_page | 7923 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 414 |
creator | Wei, Liuya Kong, Xianglong Wang, Mengran Zhang, Yixin Pan, Ruiyan Cheng, Yuanzheng Lv, Zhihua Zhou, Jin Ming, Jingjing |
description | The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K
+
or Na
+
. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL
−1
, and the detection limit of 0.0021 U mL
−1
could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Graphical abstract |
doi_str_mv | 10.1007/s00216-022-04327-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716942771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722529615</galeid><sourcerecordid>A722529615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-1c9a8cac15d2063abac74b2d90844baa631b8a9f53e66ef7ed50759572c9f1143</originalsourceid><addsrcrecordid>eNp9kc1uFSEYhidGE2v1BlyRuHFDCww_M8uTRqtJEzfHNWHg40hlYAozxl6OdyrtGE2McQWB54H3y9t1rym5oISoy0oIoxITxjDhPVNYPunOqKQDZlKQp7_3nD3vXtR6SwgVA5Vn3Y8DimaCiH0BQEeOlhzv02Yj5DU4QF9DMhWQj1suUC0kC6hCqrmgqV04lBOqSwwrcmGGEiy6xnebcWVbInxHJjkUw8msIScckttsU_5FXq5fQvbRfAsJHZHNyecyP2ovu2fexAqvfq3n3ef3745XH_DNp-uPV4cbbHvOVkztaAZrLBWOEdmbyVjFJ-ZGMnA-GSN7Og1m9KIHKcErcIIoMQrF7Ogp5f1593Z_dyn5boO66jm0gWM0CfJWNVNUjpwpRRv65i_0Nm8ltXSNYlyp1oFs1MVOnUwEHdpEazEtoXEwhzYh-NDOD4oxwUZJRRPYLtiSay3g9VLCbMq9pkQ_1Kz3mnWrWT_WrB9-6XepNjidoPzJ8h_rJ1WQrS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724770436</pqid></control><display><type>article</type><title>A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Liuya ; Kong, Xianglong ; Wang, Mengran ; Zhang, Yixin ; Pan, Ruiyan ; Cheng, Yuanzheng ; Lv, Zhihua ; Zhou, Jin ; Ming, Jingjing</creator><creatorcontrib>Wei, Liuya ; Kong, Xianglong ; Wang, Mengran ; Zhang, Yixin ; Pan, Ruiyan ; Cheng, Yuanzheng ; Lv, Zhihua ; Zhou, Jin ; Ming, Jingjing</creatorcontrib><description>The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K
+
or Na
+
. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL
−1
, and the detection limit of 0.0021 U mL
−1
could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-022-04327-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine triphosphate ; Analysis ; Analytical Chemistry ; Biochemistry ; Cations ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Coexistence ; Conformation ; Deoxyribonucleic acid ; Dimers ; DNA ; DNA biosynthesis ; DNA repair ; DNA replication ; E coli ; Fluorescence ; Food Science ; Identification and classification ; Kinases ; Laboratory Medicine ; Methods ; Monitoring/Environmental Analysis ; Nucleic acids ; Pharmacy ; Phosphorylation ; Polynucleotide kinase ; Properties ; Recombination ; Research Paper ; Sensors</subject><ispartof>Analytical and bioanalytical chemistry, 2022-11, Vol.414 (27), p.7923-7933</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-1c9a8cac15d2063abac74b2d90844baa631b8a9f53e66ef7ed50759572c9f1143</cites><orcidid>0000-0001-5057-4676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-022-04327-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-022-04327-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wei, Liuya</creatorcontrib><creatorcontrib>Kong, Xianglong</creatorcontrib><creatorcontrib>Wang, Mengran</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Pan, Ruiyan</creatorcontrib><creatorcontrib>Cheng, Yuanzheng</creatorcontrib><creatorcontrib>Lv, Zhihua</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Ming, Jingjing</creatorcontrib><title>A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><description>The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K
+
or Na
+
. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL
−1
, and the detection limit of 0.0021 U mL
−1
could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Graphical abstract</description><subject>Adenosine triphosphate</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Cations</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coexistence</subject><subject>Conformation</subject><subject>Deoxyribonucleic acid</subject><subject>Dimers</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>E coli</subject><subject>Fluorescence</subject><subject>Food Science</subject><subject>Identification and classification</subject><subject>Kinases</subject><subject>Laboratory Medicine</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nucleic acids</subject><subject>Pharmacy</subject><subject>Phosphorylation</subject><subject>Polynucleotide kinase</subject><subject>Properties</subject><subject>Recombination</subject><subject>Research Paper</subject><subject>Sensors</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1uFSEYhidGE2v1BlyRuHFDCww_M8uTRqtJEzfHNWHg40hlYAozxl6OdyrtGE2McQWB54H3y9t1rym5oISoy0oIoxITxjDhPVNYPunOqKQDZlKQp7_3nD3vXtR6SwgVA5Vn3Y8DimaCiH0BQEeOlhzv02Yj5DU4QF9DMhWQj1suUC0kC6hCqrmgqV04lBOqSwwrcmGGEiy6xnebcWVbInxHJjkUw8msIScckttsU_5FXq5fQvbRfAsJHZHNyecyP2ovu2fexAqvfq3n3ef3745XH_DNp-uPV4cbbHvOVkztaAZrLBWOEdmbyVjFJ-ZGMnA-GSN7Og1m9KIHKcErcIIoMQrF7Ogp5f1593Z_dyn5boO66jm0gWM0CfJWNVNUjpwpRRv65i_0Nm8ltXSNYlyp1oFs1MVOnUwEHdpEazEtoXEwhzYh-NDOD4oxwUZJRRPYLtiSay3g9VLCbMq9pkQ_1Kz3mnWrWT_WrB9-6XepNjidoPzJ8h_rJ1WQrS0</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wei, Liuya</creator><creator>Kong, Xianglong</creator><creator>Wang, Mengran</creator><creator>Zhang, Yixin</creator><creator>Pan, Ruiyan</creator><creator>Cheng, Yuanzheng</creator><creator>Lv, Zhihua</creator><creator>Zhou, Jin</creator><creator>Ming, Jingjing</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5057-4676</orcidid></search><sort><creationdate>20221101</creationdate><title>A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation</title><author>Wei, Liuya ; Kong, Xianglong ; Wang, Mengran ; Zhang, Yixin ; Pan, Ruiyan ; Cheng, Yuanzheng ; Lv, Zhihua ; Zhou, Jin ; Ming, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-1c9a8cac15d2063abac74b2d90844baa631b8a9f53e66ef7ed50759572c9f1143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosine triphosphate</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Cations</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coexistence</topic><topic>Conformation</topic><topic>Deoxyribonucleic acid</topic><topic>Dimers</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>E coli</topic><topic>Fluorescence</topic><topic>Food Science</topic><topic>Identification and classification</topic><topic>Kinases</topic><topic>Laboratory Medicine</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nucleic acids</topic><topic>Pharmacy</topic><topic>Phosphorylation</topic><topic>Polynucleotide kinase</topic><topic>Properties</topic><topic>Recombination</topic><topic>Research Paper</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Liuya</creatorcontrib><creatorcontrib>Kong, Xianglong</creatorcontrib><creatorcontrib>Wang, Mengran</creatorcontrib><creatorcontrib>Zhang, Yixin</creatorcontrib><creatorcontrib>Pan, Ruiyan</creatorcontrib><creatorcontrib>Cheng, Yuanzheng</creatorcontrib><creatorcontrib>Lv, Zhihua</creatorcontrib><creatorcontrib>Zhou, Jin</creatorcontrib><creatorcontrib>Ming, Jingjing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Liuya</au><au>Kong, Xianglong</au><au>Wang, Mengran</au><au>Zhang, Yixin</au><au>Pan, Ruiyan</au><au>Cheng, Yuanzheng</au><au>Lv, Zhihua</au><au>Zhou, Jin</au><au>Ming, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>414</volume><issue>27</issue><spage>7923</spage><epage>7933</epage><pages>7923-7933</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>The phosphorylation process of DNA by T4 polynucleotide kinase (T4 PNK) plays a crucial role in DNA recombination, DNA replication, and DNA repair. Traditional monomeric G-quadruplex (G4) systems are always activated by single cation such as K
+
or Na
+
. The conformation transformation caused by the coexistence of multiple cations may interfere with the signal readout and limit their applications in physiological system. In view of the stability of dimeric G4 in multiple cation solution, we reported a label-free T4 PNK fluorescence sensor based on split dimeric G4 and ligation-induced dimeric G4/thioflavin T (ThT) conformation. The dimeric G4 was divided into two independent pieces of one normal monomeric G4 and the other monomeric G4 fragment phosphorylated by T4 PNK in order to decrease the background signal. With the introduction of template DNA, DNA ligase, and invasive DNA, the dimeric G4 could be generated and liberated to combine with ThT to show obvious fluorescence signal. Using our strategy, the linear range from 0.005 to 0.5 U mL
−1
, and the detection limit of 0.0021 U mL
−1
could be achieved without the consideration of interference caused by the coexistence of multiple cations. Additionally, research in real sample determination and inhibition effect investigations indicated its further potential application value in biochemical process research and clinic diagnostics.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00216-022-04327-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5057-4676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2022-11, Vol.414 (27), p.7923-7933 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2716942771 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adenosine triphosphate Analysis Analytical Chemistry Biochemistry Cations Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Coexistence Conformation Deoxyribonucleic acid Dimers DNA DNA biosynthesis DNA repair DNA replication E coli Fluorescence Food Science Identification and classification Kinases Laboratory Medicine Methods Monitoring/Environmental Analysis Nucleic acids Pharmacy Phosphorylation Polynucleotide kinase Properties Recombination Research Paper Sensors |
title | A label-free T4 polynucleotide kinase fluorescence sensor based on split dimeric G-quadruplex and ligation-induced dimeric G-quadruplex/thioflavin T conformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20label-free%20T4%20polynucleotide%20kinase%20fluorescence%20sensor%20based%20on%20split%20dimeric%20G-quadruplex%20and%20ligation-induced%20dimeric%20G-quadruplex/thioflavin%20T%20conformation&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Wei,%20Liuya&rft.date=2022-11-01&rft.volume=414&rft.issue=27&rft.spage=7923&rft.epage=7933&rft.pages=7923-7933&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-022-04327-6&rft_dat=%3Cgale_proqu%3EA722529615%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724770436&rft_id=info:pmid/&rft_galeid=A722529615&rfr_iscdi=true |