Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence
[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional c...
Gespeichert in:
Veröffentlicht in: | International wound journal 2022-10, Vol.19 (6), p.1283-1285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 6 |
container_start_page | 1283 |
container_title | International wound journal |
container_volume | 19 |
creator | Cross, Karen Harding, Keith |
description | [...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance. |
doi_str_mv | 10.1111/iwj.13952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716935657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716935657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj8O_gEJeNFDNR-b3exRxE8EQRQ9GbLZSU3dZmuya_Hfm9rag2AuE4ZnHmZehPYpOaHpnbrZ-ITyUrA1NKBFxoaZpC_rqz-hW2g7xjEhrBSi2ERbPKecipIM0OuDi-94GlrrGudH2HncvUFqwCf4zrUea1_jLoDuJqmBW4vNW2i9M3jW9r6OuI_zOR06Z51xukmKDprGjcAb2EUbVjcR9pZ1Bz1dXjyeXw_v7q9uzs_uhoZLyYZaFpllIGiumRG8khYyKamEqhaMZJm0mdC1ZISBrQzLua4qLvJclCUXpGZ8Bx0tvOmSjx5ipyYumrSG9tD2UbGC5gnNRZHQwz_ouO2DT9spTkqSk1KWWaKOF5QJbYwBrJoGN9HhS1Gi5qGrFLr6CT2xB0tjX02gXpG_KSfgdAHMXANf_5vUzfPtQvkNV2uLfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090609894</pqid></control><display><type>article</type><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cross, Karen ; Harding, Keith</creator><creatorcontrib>Cross, Karen ; Harding, Keith</creatorcontrib><description>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</description><identifier>ISSN: 1742-4801</identifier><identifier>ISSN: 1742-481X</identifier><identifier>EISSN: 1742-481X</identifier><identifier>DOI: 10.1111/iwj.13952</identifier><identifier>PMID: 36131590</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Cancer ; Diabetes ; Foot diseases ; Health care ; Humans ; Leg ulcers ; Machine learning ; Patients ; Pattern recognition ; Prevention ; Risk Assessment ; Risk factors ; Systematic review ; Wound healing ; Wounds and Injuries - prevention & control ; Wounds and Injuries - therapy</subject><ispartof>International wound journal, 2022-10, Vol.19 (6), p.1283-1285</ispartof><rights>2022 The Authors. published by Medicalhelplines.com Inc (3M) and John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</citedby><cites>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fiwj.13952$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fiwj.13952$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36131590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cross, Karen</creatorcontrib><creatorcontrib>Harding, Keith</creatorcontrib><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><title>International wound journal</title><addtitle>Int Wound J</addtitle><description>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Diabetes</subject><subject>Foot diseases</subject><subject>Health care</subject><subject>Humans</subject><subject>Leg ulcers</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Pattern recognition</subject><subject>Prevention</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Systematic review</subject><subject>Wound healing</subject><subject>Wounds and Injuries - prevention & control</subject><subject>Wounds and Injuries - therapy</subject><issn>1742-4801</issn><issn>1742-481X</issn><issn>1742-481X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE1LAzEQhoMoWj8O_gEJeNFDNR-b3exRxE8EQRQ9GbLZSU3dZmuya_Hfm9rag2AuE4ZnHmZehPYpOaHpnbrZ-ITyUrA1NKBFxoaZpC_rqz-hW2g7xjEhrBSi2ERbPKecipIM0OuDi-94GlrrGudH2HncvUFqwCf4zrUea1_jLoDuJqmBW4vNW2i9M3jW9r6OuI_zOR06Z51xukmKDprGjcAb2EUbVjcR9pZ1Bz1dXjyeXw_v7q9uzs_uhoZLyYZaFpllIGiumRG8khYyKamEqhaMZJm0mdC1ZISBrQzLua4qLvJclCUXpGZ8Bx0tvOmSjx5ipyYumrSG9tD2UbGC5gnNRZHQwz_ouO2DT9spTkqSk1KWWaKOF5QJbYwBrJoGN9HhS1Gi5qGrFLr6CT2xB0tjX02gXpG_KSfgdAHMXANf_5vUzfPtQvkNV2uLfg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Cross, Karen</creator><creator>Harding, Keith</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>202210</creationdate><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><author>Cross, Karen ; Harding, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Diabetes</topic><topic>Foot diseases</topic><topic>Health care</topic><topic>Humans</topic><topic>Leg ulcers</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Pattern recognition</topic><topic>Prevention</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Systematic review</topic><topic>Wound healing</topic><topic>Wounds and Injuries - prevention & control</topic><topic>Wounds and Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Karen</creatorcontrib><creatorcontrib>Harding, Keith</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International wound journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Karen</au><au>Harding, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</atitle><jtitle>International wound journal</jtitle><addtitle>Int Wound J</addtitle><date>2022-10</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><spage>1283</spage><epage>1285</epage><pages>1283-1285</pages><issn>1742-4801</issn><issn>1742-481X</issn><eissn>1742-481X</eissn><abstract>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36131590</pmid><doi>10.1111/iwj.13952</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-4801 |
ispartof | International wound journal, 2022-10, Vol.19 (6), p.1283-1285 |
issn | 1742-4801 1742-481X 1742-481X |
language | eng |
recordid | cdi_proquest_miscellaneous_2716935657 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Artificial Intelligence Cancer Diabetes Foot diseases Health care Humans Leg ulcers Machine learning Patients Pattern recognition Prevention Risk Assessment Risk factors Systematic review Wound healing Wounds and Injuries - prevention & control Wounds and Injuries - therapy |
title | Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20profiling%20in%20the%20prevention%20and%20treatment%20of%20chronic%20wounds%20using%20artificial%20intelligence&rft.jtitle=International%20wound%20journal&rft.au=Cross,%20Karen&rft.date=2022-10&rft.volume=19&rft.issue=6&rft.spage=1283&rft.epage=1285&rft.pages=1283-1285&rft.issn=1742-4801&rft.eissn=1742-481X&rft_id=info:doi/10.1111/iwj.13952&rft_dat=%3Cproquest_cross%3E2716935657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090609894&rft_id=info:pmid/36131590&rfr_iscdi=true |