Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence

[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International wound journal 2022-10, Vol.19 (6), p.1283-1285
Hauptverfasser: Cross, Karen, Harding, Keith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 6
container_start_page 1283
container_title International wound journal
container_volume 19
creator Cross, Karen
Harding, Keith
description [...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.
doi_str_mv 10.1111/iwj.13952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716935657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716935657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj8O_gEJeNFDNR-b3exRxE8EQRQ9GbLZSU3dZmuya_Hfm9rag2AuE4ZnHmZehPYpOaHpnbrZ-ITyUrA1NKBFxoaZpC_rqz-hW2g7xjEhrBSi2ERbPKecipIM0OuDi-94GlrrGudH2HncvUFqwCf4zrUea1_jLoDuJqmBW4vNW2i9M3jW9r6OuI_zOR06Z51xukmKDprGjcAb2EUbVjcR9pZ1Bz1dXjyeXw_v7q9uzs_uhoZLyYZaFpllIGiumRG8khYyKamEqhaMZJm0mdC1ZISBrQzLua4qLvJclCUXpGZ8Bx0tvOmSjx5ipyYumrSG9tD2UbGC5gnNRZHQwz_ouO2DT9spTkqSk1KWWaKOF5QJbYwBrJoGN9HhS1Gi5qGrFLr6CT2xB0tjX02gXpG_KSfgdAHMXANf_5vUzfPtQvkNV2uLfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090609894</pqid></control><display><type>article</type><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cross, Karen ; Harding, Keith</creator><creatorcontrib>Cross, Karen ; Harding, Keith</creatorcontrib><description>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</description><identifier>ISSN: 1742-4801</identifier><identifier>ISSN: 1742-481X</identifier><identifier>EISSN: 1742-481X</identifier><identifier>DOI: 10.1111/iwj.13952</identifier><identifier>PMID: 36131590</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Artificial Intelligence ; Cancer ; Diabetes ; Foot diseases ; Health care ; Humans ; Leg ulcers ; Machine learning ; Patients ; Pattern recognition ; Prevention ; Risk Assessment ; Risk factors ; Systematic review ; Wound healing ; Wounds and Injuries - prevention &amp; control ; Wounds and Injuries - therapy</subject><ispartof>International wound journal, 2022-10, Vol.19 (6), p.1283-1285</ispartof><rights>2022 The Authors. published by Medicalhelplines.com Inc (3M) and John Wiley &amp; Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</citedby><cites>FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fiwj.13952$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fiwj.13952$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36131590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cross, Karen</creatorcontrib><creatorcontrib>Harding, Keith</creatorcontrib><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><title>International wound journal</title><addtitle>Int Wound J</addtitle><description>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cancer</subject><subject>Diabetes</subject><subject>Foot diseases</subject><subject>Health care</subject><subject>Humans</subject><subject>Leg ulcers</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Pattern recognition</subject><subject>Prevention</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Systematic review</subject><subject>Wound healing</subject><subject>Wounds and Injuries - prevention &amp; control</subject><subject>Wounds and Injuries - therapy</subject><issn>1742-4801</issn><issn>1742-481X</issn><issn>1742-481X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE1LAzEQhoMoWj8O_gEJeNFDNR-b3exRxE8EQRQ9GbLZSU3dZmuya_Hfm9rag2AuE4ZnHmZehPYpOaHpnbrZ-ITyUrA1NKBFxoaZpC_rqz-hW2g7xjEhrBSi2ERbPKecipIM0OuDi-94GlrrGudH2HncvUFqwCf4zrUea1_jLoDuJqmBW4vNW2i9M3jW9r6OuI_zOR06Z51xukmKDprGjcAb2EUbVjcR9pZ1Bz1dXjyeXw_v7q9uzs_uhoZLyYZaFpllIGiumRG8khYyKamEqhaMZJm0mdC1ZISBrQzLua4qLvJclCUXpGZ8Bx0tvOmSjx5ipyYumrSG9tD2UbGC5gnNRZHQwz_ouO2DT9spTkqSk1KWWaKOF5QJbYwBrJoGN9HhS1Gi5qGrFLr6CT2xB0tjX02gXpG_KSfgdAHMXANf_5vUzfPtQvkNV2uLfg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Cross, Karen</creator><creator>Harding, Keith</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>202210</creationdate><title>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</title><author>Cross, Karen ; Harding, Keith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-a874f2e516a2c53b8fe48818ebd520448f45ad8202efbc263abb3566599350d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cancer</topic><topic>Diabetes</topic><topic>Foot diseases</topic><topic>Health care</topic><topic>Humans</topic><topic>Leg ulcers</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Pattern recognition</topic><topic>Prevention</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Systematic review</topic><topic>Wound healing</topic><topic>Wounds and Injuries - prevention &amp; control</topic><topic>Wounds and Injuries - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cross, Karen</creatorcontrib><creatorcontrib>Harding, Keith</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International wound journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cross, Karen</au><au>Harding, Keith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence</atitle><jtitle>International wound journal</jtitle><addtitle>Int Wound J</addtitle><date>2022-10</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><spage>1283</spage><epage>1285</epage><pages>1283-1285</pages><issn>1742-4801</issn><issn>1742-481X</issn><eissn>1742-481X</eissn><abstract>[...]this complex web of factors includes other health information outside of the wound itself. [...]there are several challenges in the clinical use of AI-based applications and interpretation of the results, including data privacy, poorly selected/outdated data, selection bias, and unintentional continuance of historical biases/stereotypes in the data, which can lead to erroneous conclusions. The impact of machine learning on patient care: a systematic review. A Clinical Support App for routine wound management: reducing practice variation, improving clinician confidence and increasing formulary compliance.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36131590</pmid><doi>10.1111/iwj.13952</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-4801
ispartof International wound journal, 2022-10, Vol.19 (6), p.1283-1285
issn 1742-4801
1742-481X
1742-481X
language eng
recordid cdi_proquest_miscellaneous_2716935657
source Wiley Online Library - AutoHoldings Journals; MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Artificial Intelligence
Cancer
Diabetes
Foot diseases
Health care
Humans
Leg ulcers
Machine learning
Patients
Pattern recognition
Prevention
Risk Assessment
Risk factors
Systematic review
Wound healing
Wounds and Injuries - prevention & control
Wounds and Injuries - therapy
title Risk profiling in the prevention and treatment of chronic wounds using artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20profiling%20in%20the%20prevention%20and%20treatment%20of%20chronic%20wounds%20using%20artificial%20intelligence&rft.jtitle=International%20wound%20journal&rft.au=Cross,%20Karen&rft.date=2022-10&rft.volume=19&rft.issue=6&rft.spage=1283&rft.epage=1285&rft.pages=1283-1285&rft.issn=1742-4801&rft.eissn=1742-481X&rft_id=info:doi/10.1111/iwj.13952&rft_dat=%3Cproquest_cross%3E2716935657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090609894&rft_id=info:pmid/36131590&rfr_iscdi=true