Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective
Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate‐adaptive randomization is used. In this article, we investigate...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2022-12, Vol.41 (29), p.5645-5661 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5661 |
---|---|
container_issue | 29 |
container_start_page | 5645 |
container_title | Statistics in medicine |
container_volume | 41 |
creator | Ma, Wei Tu, Fuyi Liu, Hanzhong |
description | Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate‐adaptive randomization is used. In this article, we investigate several of the most intuitive and commonly used regression models for estimating and inferring the treatment effect in randomized clinical trials. By allowing the regression model to be arbitrarily misspecified, we demonstrate that all these regression‐based estimators robustly estimate the treatment effect, albeit with possibly different efficiency. We also propose consistent non‐parametric variance estimators and compare their performances to those of the model‐based variance estimators that are readily available in standard statistical software. Based on the results and taking into account both theoretical efficiency and practical feasibility, we make recommendations for the effective use of regression under various scenarios. For equal allocation, it suffices to use the regression adjustment for the stratum covariates and additional baseline covariates, if available, with the usual ordinary‐least‐squares variance estimator. For unequal allocation, regression with treatment‐by‐covariate interactions should be used, together with our proposed variance estimators. These recommendations apply to simple and stratified randomization, and minimization, among others. We hope this work helps to clarify and promote the usage of regression in randomized clinical trials. |
doi_str_mv | 10.1002/sim.9585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716933632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739359427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-ed276420d83014de9f74fdfdf38420576fe8e5d7f88b06df050e18a2eaa590213</originalsourceid><addsrcrecordid>eNp1kMtKxDAUQIMoOo6CXyAFN26qeTRN6k7Ex4Ai-FiXTHMjkbapSTsyrvwEP8Fv8VP8EjO-FoLcxYXLuWdxENoieI9gTPeDbfYKLvkSGhFciBRTLpfRCFMh0lwQvobWQ7jHmBBOxSpaYzlhWS7lCNkruPMQgnVtolpVz4MNiXE-qdxMeat6eH9-UVp1vZ1B4lWrXWOfVB_5g-Tw7dW76RD6-KoTMMZWFto-sa0BD20FSQc-dFAtnjfQilF1gM3vPUa3J8c3R2fp-eXp5OjwPK1YVvAUNBV5RrGWDJNMQ2FEZnQcJuOVi9yABK6FkXKKc20wx0CkoqAULzAlbIx2v7yddw8DhL5sbKigrlULbgglFSQvGMsZjejOH_TeDT5WWFCsYLzI4v4VVt6F4MGUnbeN8vOS4HKRv4z5y0X-iG5_C4dpA_oX_OkdgfQLeLQ1zP8VldeTi0_hB-7UkXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739359427</pqid></control><display><type>article</type><title>Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Wei ; Tu, Fuyi ; Liu, Hanzhong</creator><creatorcontrib>Ma, Wei ; Tu, Fuyi ; Liu, Hanzhong</creatorcontrib><description>Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate‐adaptive randomization is used. In this article, we investigate several of the most intuitive and commonly used regression models for estimating and inferring the treatment effect in randomized clinical trials. By allowing the regression model to be arbitrarily misspecified, we demonstrate that all these regression‐based estimators robustly estimate the treatment effect, albeit with possibly different efficiency. We also propose consistent non‐parametric variance estimators and compare their performances to those of the model‐based variance estimators that are readily available in standard statistical software. Based on the results and taking into account both theoretical efficiency and practical feasibility, we make recommendations for the effective use of regression under various scenarios. For equal allocation, it suffices to use the regression adjustment for the stratum covariates and additional baseline covariates, if available, with the usual ordinary‐least‐squares variance estimator. For unequal allocation, regression with treatment‐by‐covariate interactions should be used, together with our proposed variance estimators. These recommendations apply to simple and stratified randomization, and minimization, among others. We hope this work helps to clarify and promote the usage of regression in randomized clinical trials.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9585</identifier><identifier>PMID: 36134688</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analysis of covariance ; ANCOVA ; Clinical trials ; Computer Simulation ; covariate‐adaptive randomization ; Humans ; Linear Models ; minimization ; Models, Statistical ; Random Allocation ; regression adjustment ; stratified randomization</subject><ispartof>Statistics in medicine, 2022-12, Vol.41 (29), p.5645-5661</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-ed276420d83014de9f74fdfdf38420576fe8e5d7f88b06df050e18a2eaa590213</citedby><cites>FETCH-LOGICAL-c3495-ed276420d83014de9f74fdfdf38420576fe8e5d7f88b06df050e18a2eaa590213</cites><orcidid>0000-0002-2952-7944 ; 0000-0002-0028-5136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9585$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9585$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36134688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Fuyi</creatorcontrib><creatorcontrib>Liu, Hanzhong</creatorcontrib><title>Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate‐adaptive randomization is used. In this article, we investigate several of the most intuitive and commonly used regression models for estimating and inferring the treatment effect in randomized clinical trials. By allowing the regression model to be arbitrarily misspecified, we demonstrate that all these regression‐based estimators robustly estimate the treatment effect, albeit with possibly different efficiency. We also propose consistent non‐parametric variance estimators and compare their performances to those of the model‐based variance estimators that are readily available in standard statistical software. Based on the results and taking into account both theoretical efficiency and practical feasibility, we make recommendations for the effective use of regression under various scenarios. For equal allocation, it suffices to use the regression adjustment for the stratum covariates and additional baseline covariates, if available, with the usual ordinary‐least‐squares variance estimator. For unequal allocation, regression with treatment‐by‐covariate interactions should be used, together with our proposed variance estimators. These recommendations apply to simple and stratified randomization, and minimization, among others. We hope this work helps to clarify and promote the usage of regression in randomized clinical trials.</description><subject>Analysis of covariance</subject><subject>ANCOVA</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>covariate‐adaptive randomization</subject><subject>Humans</subject><subject>Linear Models</subject><subject>minimization</subject><subject>Models, Statistical</subject><subject>Random Allocation</subject><subject>regression adjustment</subject><subject>stratified randomization</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUQIMoOo6CXyAFN26qeTRN6k7Ex4Ai-FiXTHMjkbapSTsyrvwEP8Fv8VP8EjO-FoLcxYXLuWdxENoieI9gTPeDbfYKLvkSGhFciBRTLpfRCFMh0lwQvobWQ7jHmBBOxSpaYzlhWS7lCNkruPMQgnVtolpVz4MNiXE-qdxMeat6eH9-UVp1vZ1B4lWrXWOfVB_5g-Tw7dW76RD6-KoTMMZWFto-sa0BD20FSQc-dFAtnjfQilF1gM3vPUa3J8c3R2fp-eXp5OjwPK1YVvAUNBV5RrGWDJNMQ2FEZnQcJuOVi9yABK6FkXKKc20wx0CkoqAULzAlbIx2v7yddw8DhL5sbKigrlULbgglFSQvGMsZjejOH_TeDT5WWFCsYLzI4v4VVt6F4MGUnbeN8vOS4HKRv4z5y0X-iG5_C4dpA_oX_OkdgfQLeLQ1zP8VldeTi0_hB-7UkXE</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Ma, Wei</creator><creator>Tu, Fuyi</creator><creator>Liu, Hanzhong</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2952-7944</orcidid><orcidid>https://orcid.org/0000-0002-0028-5136</orcidid></search><sort><creationdate>20221220</creationdate><title>Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective</title><author>Ma, Wei ; Tu, Fuyi ; Liu, Hanzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-ed276420d83014de9f74fdfdf38420576fe8e5d7f88b06df050e18a2eaa590213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis of covariance</topic><topic>ANCOVA</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>covariate‐adaptive randomization</topic><topic>Humans</topic><topic>Linear Models</topic><topic>minimization</topic><topic>Models, Statistical</topic><topic>Random Allocation</topic><topic>regression adjustment</topic><topic>stratified randomization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Tu, Fuyi</creatorcontrib><creatorcontrib>Liu, Hanzhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Wei</au><au>Tu, Fuyi</au><au>Liu, Hanzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>41</volume><issue>29</issue><spage>5645</spage><epage>5661</epage><pages>5645-5661</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate‐adaptive randomization is used. In this article, we investigate several of the most intuitive and commonly used regression models for estimating and inferring the treatment effect in randomized clinical trials. By allowing the regression model to be arbitrarily misspecified, we demonstrate that all these regression‐based estimators robustly estimate the treatment effect, albeit with possibly different efficiency. We also propose consistent non‐parametric variance estimators and compare their performances to those of the model‐based variance estimators that are readily available in standard statistical software. Based on the results and taking into account both theoretical efficiency and practical feasibility, we make recommendations for the effective use of regression under various scenarios. For equal allocation, it suffices to use the regression adjustment for the stratum covariates and additional baseline covariates, if available, with the usual ordinary‐least‐squares variance estimator. For unequal allocation, regression with treatment‐by‐covariate interactions should be used, together with our proposed variance estimators. These recommendations apply to simple and stratified randomization, and minimization, among others. We hope this work helps to clarify and promote the usage of regression in randomized clinical trials.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36134688</pmid><doi>10.1002/sim.9585</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2952-7944</orcidid><orcidid>https://orcid.org/0000-0002-0028-5136</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2022-12, Vol.41 (29), p.5645-5661 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2716933632 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Analysis of covariance ANCOVA Clinical trials Computer Simulation covariate‐adaptive randomization Humans Linear Models minimization Models, Statistical Random Allocation regression adjustment stratified randomization |
title | Regression analysis for covariate‐adaptive randomization: A robust and efficient inference perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression%20analysis%20for%20covariate%E2%80%90adaptive%20randomization:%20A%C2%A0robust%20and%20efficient%20inference%20perspective&rft.jtitle=Statistics%20in%20medicine&rft.au=Ma,%20Wei&rft.date=2022-12-20&rft.volume=41&rft.issue=29&rft.spage=5645&rft.epage=5661&rft.pages=5645-5661&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9585&rft_dat=%3Cproquest_cross%3E2739359427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739359427&rft_id=info:pmid/36134688&rfr_iscdi=true |