Enantioselective [2+2]-cycloadditions with triplet photoenzymes
Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scop...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-11, Vol.611 (7937), p.715-720 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 7937 |
container_start_page | 715 |
container_title | Nature (London) |
container_volume | 611 |
creator | Sun, Ningning Huang, Jianjian Qian, Junyi Zhou, Tai-Ping Guo, Juan Tang, Langyu Zhang, Wentao Deng, Yaming Zhao, Weining Wu, Guojiao Liao, Rong-Zhen Chen, Xi Zhong, Fangrui Wu, Yuzhou |
description | Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis
1
–
3
. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction
4
–
6
. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme–substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity
7
–
10
of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.
Triplet photoenzymes developed through genetic encoding and directed evolution result in excited-state photocatalysts that provide a valuable approach to enantioselective photochemical synthesis. |
doi_str_mv | 10.1038/s41586-022-05342-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716932119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739799979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c828730db7e2569a31f833d07d101f4b40f7cd172c319bf0fb82499f1d91849e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FL4JEJx9tkpPIsn7Aghc9iYQ2Tdwu3aY2WWX99UYrCB48DHOY530ZHoSOCZwTYPIicJLLAgOlGHLGKeY7aEK4KDAvpNhFEwAqMUhW7KODEFYAkBPBJ-hy3pVdbHywrTWxebPZEz2jz9hsTevLum7SrQvZexOXWRyavrUx65c-ett9bNc2HKI9V7bBHv3sKXq8nj_MbvHi_uZudrXAhuU0YiOpFAzqSliaF6pkxEnGahA1AeJ4xcEJUxNBDSOqcuAqSblSjtSKSK4sm6LTsbcf_OvGhqjXTTC2bcvO-k3QVJBCMUqISujJH3TlN0OXvksUU0KpNImiI2UGH8Jgne6HZl0OW01AfznVo1OdnOpvp5qnEBtDIcHdix1-q_9JfQJLPHiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739799979</pqid></control><display><type>article</type><title>Enantioselective [2+2]-cycloadditions with triplet photoenzymes</title><source>SpringerLink Journals</source><source>Nature</source><creator>Sun, Ningning ; Huang, Jianjian ; Qian, Junyi ; Zhou, Tai-Ping ; Guo, Juan ; Tang, Langyu ; Zhang, Wentao ; Deng, Yaming ; Zhao, Weining ; Wu, Guojiao ; Liao, Rong-Zhen ; Chen, Xi ; Zhong, Fangrui ; Wu, Yuzhou</creator><creatorcontrib>Sun, Ningning ; Huang, Jianjian ; Qian, Junyi ; Zhou, Tai-Ping ; Guo, Juan ; Tang, Langyu ; Zhang, Wentao ; Deng, Yaming ; Zhao, Weining ; Wu, Guojiao ; Liao, Rong-Zhen ; Chen, Xi ; Zhong, Fangrui ; Wu, Yuzhou</creatorcontrib><description>Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis
1
–
3
. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction
4
–
6
. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme–substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity
7
–
10
of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.
Triplet photoenzymes developed through genetic encoding and directed evolution result in excited-state photocatalysts that provide a valuable approach to enantioselective photochemical synthesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05342-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 119/118 ; 38/23 ; 38/44 ; 38/70 ; 38/77 ; 639/638/439/890 ; 639/638/77/603 ; 639/638/77/883 ; 639/638/77/890 ; 82/1 ; 82/80 ; 82/83 ; Catalysis ; Crystal structure ; Directed evolution ; Enantiomers ; Energy ; Energy transfer ; Enzymes ; Evolution ; Humanities and Social Sciences ; Indoles ; multidisciplinary ; Mutagenesis ; Optimization ; Photocatalysis ; Photochemicals ; Proteins ; Science ; Science (multidisciplinary) ; Stereochemistry ; Substrates</subject><ispartof>Nature (London), 2022-11, Vol.611 (7937), p.715-720</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Nov 24, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c828730db7e2569a31f833d07d101f4b40f7cd172c319bf0fb82499f1d91849e3</citedby><cites>FETCH-LOGICAL-c352t-c828730db7e2569a31f833d07d101f4b40f7cd172c319bf0fb82499f1d91849e3</cites><orcidid>0000-0001-8295-2854 ; 0000-0002-8989-6928 ; 0000-0003-2150-370X ; 0000-0003-3229-4982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05342-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05342-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Ningning</creatorcontrib><creatorcontrib>Huang, Jianjian</creatorcontrib><creatorcontrib>Qian, Junyi</creatorcontrib><creatorcontrib>Zhou, Tai-Ping</creatorcontrib><creatorcontrib>Guo, Juan</creatorcontrib><creatorcontrib>Tang, Langyu</creatorcontrib><creatorcontrib>Zhang, Wentao</creatorcontrib><creatorcontrib>Deng, Yaming</creatorcontrib><creatorcontrib>Zhao, Weining</creatorcontrib><creatorcontrib>Wu, Guojiao</creatorcontrib><creatorcontrib>Liao, Rong-Zhen</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Zhong, Fangrui</creatorcontrib><creatorcontrib>Wu, Yuzhou</creatorcontrib><title>Enantioselective [2+2]-cycloadditions with triplet photoenzymes</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis
1
–
3
. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction
4
–
6
. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme–substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity
7
–
10
of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.
Triplet photoenzymes developed through genetic encoding and directed evolution result in excited-state photocatalysts that provide a valuable approach to enantioselective photochemical synthesis.</description><subject>101/58</subject><subject>119/118</subject><subject>38/23</subject><subject>38/44</subject><subject>38/70</subject><subject>38/77</subject><subject>639/638/439/890</subject><subject>639/638/77/603</subject><subject>639/638/77/883</subject><subject>639/638/77/890</subject><subject>82/1</subject><subject>82/80</subject><subject>82/83</subject><subject>Catalysis</subject><subject>Crystal structure</subject><subject>Directed evolution</subject><subject>Enantiomers</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>Indoles</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Optimization</subject><subject>Photocatalysis</subject><subject>Photochemicals</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stereochemistry</subject><subject>Substrates</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8FL4JEJx9tkpPIsn7Aghc9iYQ2Tdwu3aY2WWX99UYrCB48DHOY530ZHoSOCZwTYPIicJLLAgOlGHLGKeY7aEK4KDAvpNhFEwAqMUhW7KODEFYAkBPBJ-hy3pVdbHywrTWxebPZEz2jz9hsTevLum7SrQvZexOXWRyavrUx65c-ett9bNc2HKI9V7bBHv3sKXq8nj_MbvHi_uZudrXAhuU0YiOpFAzqSliaF6pkxEnGahA1AeJ4xcEJUxNBDSOqcuAqSblSjtSKSK4sm6LTsbcf_OvGhqjXTTC2bcvO-k3QVJBCMUqISujJH3TlN0OXvksUU0KpNImiI2UGH8Jgne6HZl0OW01AfznVo1OdnOpvp5qnEBtDIcHdix1-q_9JfQJLPHiU</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Sun, Ningning</creator><creator>Huang, Jianjian</creator><creator>Qian, Junyi</creator><creator>Zhou, Tai-Ping</creator><creator>Guo, Juan</creator><creator>Tang, Langyu</creator><creator>Zhang, Wentao</creator><creator>Deng, Yaming</creator><creator>Zhao, Weining</creator><creator>Wu, Guojiao</creator><creator>Liao, Rong-Zhen</creator><creator>Chen, Xi</creator><creator>Zhong, Fangrui</creator><creator>Wu, Yuzhou</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8295-2854</orcidid><orcidid>https://orcid.org/0000-0002-8989-6928</orcidid><orcidid>https://orcid.org/0000-0003-2150-370X</orcidid><orcidid>https://orcid.org/0000-0003-3229-4982</orcidid></search><sort><creationdate>20221124</creationdate><title>Enantioselective [2+2]-cycloadditions with triplet photoenzymes</title><author>Sun, Ningning ; Huang, Jianjian ; Qian, Junyi ; Zhou, Tai-Ping ; Guo, Juan ; Tang, Langyu ; Zhang, Wentao ; Deng, Yaming ; Zhao, Weining ; Wu, Guojiao ; Liao, Rong-Zhen ; Chen, Xi ; Zhong, Fangrui ; Wu, Yuzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c828730db7e2569a31f833d07d101f4b40f7cd172c319bf0fb82499f1d91849e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>101/58</topic><topic>119/118</topic><topic>38/23</topic><topic>38/44</topic><topic>38/70</topic><topic>38/77</topic><topic>639/638/439/890</topic><topic>639/638/77/603</topic><topic>639/638/77/883</topic><topic>639/638/77/890</topic><topic>82/1</topic><topic>82/80</topic><topic>82/83</topic><topic>Catalysis</topic><topic>Crystal structure</topic><topic>Directed evolution</topic><topic>Enantiomers</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>Indoles</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Optimization</topic><topic>Photocatalysis</topic><topic>Photochemicals</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stereochemistry</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ningning</creatorcontrib><creatorcontrib>Huang, Jianjian</creatorcontrib><creatorcontrib>Qian, Junyi</creatorcontrib><creatorcontrib>Zhou, Tai-Ping</creatorcontrib><creatorcontrib>Guo, Juan</creatorcontrib><creatorcontrib>Tang, Langyu</creatorcontrib><creatorcontrib>Zhang, Wentao</creatorcontrib><creatorcontrib>Deng, Yaming</creatorcontrib><creatorcontrib>Zhao, Weining</creatorcontrib><creatorcontrib>Wu, Guojiao</creatorcontrib><creatorcontrib>Liao, Rong-Zhen</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Zhong, Fangrui</creatorcontrib><creatorcontrib>Wu, Yuzhou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ningning</au><au>Huang, Jianjian</au><au>Qian, Junyi</au><au>Zhou, Tai-Ping</au><au>Guo, Juan</au><au>Tang, Langyu</au><au>Zhang, Wentao</au><au>Deng, Yaming</au><au>Zhao, Weining</au><au>Wu, Guojiao</au><au>Liao, Rong-Zhen</au><au>Chen, Xi</au><au>Zhong, Fangrui</au><au>Wu, Yuzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enantioselective [2+2]-cycloadditions with triplet photoenzymes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-11-24</date><risdate>2022</risdate><volume>611</volume><issue>7937</issue><spage>715</spage><epage>720</epage><pages>715-720</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis
1
–
3
. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction
4
–
6
. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme–substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity
7
–
10
of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.
Triplet photoenzymes developed through genetic encoding and directed evolution result in excited-state photocatalysts that provide a valuable approach to enantioselective photochemical synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-05342-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8295-2854</orcidid><orcidid>https://orcid.org/0000-0002-8989-6928</orcidid><orcidid>https://orcid.org/0000-0003-2150-370X</orcidid><orcidid>https://orcid.org/0000-0003-3229-4982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-11, Vol.611 (7937), p.715-720 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2716932119 |
source | SpringerLink Journals; Nature |
subjects | 101/58 119/118 38/23 38/44 38/70 38/77 639/638/439/890 639/638/77/603 639/638/77/883 639/638/77/890 82/1 82/80 82/83 Catalysis Crystal structure Directed evolution Enantiomers Energy Energy transfer Enzymes Evolution Humanities and Social Sciences Indoles multidisciplinary Mutagenesis Optimization Photocatalysis Photochemicals Proteins Science Science (multidisciplinary) Stereochemistry Substrates |
title | Enantioselective [2+2]-cycloadditions with triplet photoenzymes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enantioselective%20%5B2+2%5D-cycloadditions%20with%20triplet%20photoenzymes&rft.jtitle=Nature%20(London)&rft.au=Sun,%20Ningning&rft.date=2022-11-24&rft.volume=611&rft.issue=7937&rft.spage=715&rft.epage=720&rft.pages=715-720&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05342-4&rft_dat=%3Cproquest_cross%3E2739799979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739799979&rft_id=info:pmid/&rfr_iscdi=true |