Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors
Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learn...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2022-12, Vol.222, p.239-250 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | |
container_start_page | 239 |
container_title | International journal of biological macromolecules |
container_volume | 222 |
creator | Sharma, Tanuj Saralamma, Venu Venkatarame Gowda Lee, Duk Chul Imran, Mohammad Azhar Choi, Jaehyuk Baig, Mohammad Hassan Dong, Jae-June |
description | Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors. |
doi_str_mv | 10.1016/j.ijbiomac.2022.09.151 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716932037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022020827</els_id><sourcerecordid>2716932037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEkvpK1Q-cknqsbuJcwNWQBGVuJSz5dhjMqvEXmxvJd6ehIUznEYaff8vzXyM3YBoQUB3e2zpOFJarGulkLIVQwt7eMZ2oPuhEUKo52wn4A4aDUq8ZK9KOa7bbg96x-ohLSNFit95qfns6jljM9qCnp8mm9fSdJpSRr4kj_OG2ej5up4oIp_R5t_ZkDKvE3LyGCsFcrZSijwFHtMTzvz94xdOcaKRasrlNXsR7Fzw-s-8Yt8-fng83DcPXz99Prx7aJzqdW10GCCMndZBjIMTPXTKaYAhiGCtVnjnQQbs9h1I61YGBYahB-uDD4N0QV2xN5feU04_zliqWag4nGcbMZ2Lkb1UsH2p_w8UukFJoTa0u6Aup1IyBnPKtNj804AwmxFzNH-NmM2IEYNZjazBt5cgrjc_EWZTHGF06Cmjq8Yn-lfFL6Y8mps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716932037</pqid></control><display><type>article</type><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</creator><creatorcontrib>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</creatorcontrib><description>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.09.151</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>breasts ; Bruton's tyrosine kinase ; cell growth ; computer simulation ; enzymes ; humans ; inhibitory concentration 50 ; lung neoplasms ; Machine learning ; neoplasm cells ; pharmacology ; Pharmacophore ; therapeutics ; tyrosine ; Virtual screening</subject><ispartof>International journal of biological macromolecules, 2022-12, Vol.222, p.239-250</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</citedby><cites>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2022.09.151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Sharma, Tanuj</creatorcontrib><creatorcontrib>Saralamma, Venu Venkatarame Gowda</creatorcontrib><creatorcontrib>Lee, Duk Chul</creatorcontrib><creatorcontrib>Imran, Mohammad Azhar</creatorcontrib><creatorcontrib>Choi, Jaehyuk</creatorcontrib><creatorcontrib>Baig, Mohammad Hassan</creatorcontrib><creatorcontrib>Dong, Jae-June</creatorcontrib><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><title>International journal of biological macromolecules</title><description>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</description><subject>breasts</subject><subject>Bruton's tyrosine kinase</subject><subject>cell growth</subject><subject>computer simulation</subject><subject>enzymes</subject><subject>humans</subject><subject>inhibitory concentration 50</subject><subject>lung neoplasms</subject><subject>Machine learning</subject><subject>neoplasm cells</subject><subject>pharmacology</subject><subject>Pharmacophore</subject><subject>therapeutics</subject><subject>tyrosine</subject><subject>Virtual screening</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EEkvpK1Q-cknqsbuJcwNWQBGVuJSz5dhjMqvEXmxvJd6ehIUznEYaff8vzXyM3YBoQUB3e2zpOFJarGulkLIVQwt7eMZ2oPuhEUKo52wn4A4aDUq8ZK9KOa7bbg96x-ohLSNFit95qfns6jljM9qCnp8mm9fSdJpSRr4kj_OG2ej5up4oIp_R5t_ZkDKvE3LyGCsFcrZSijwFHtMTzvz94xdOcaKRasrlNXsR7Fzw-s-8Yt8-fng83DcPXz99Prx7aJzqdW10GCCMndZBjIMTPXTKaYAhiGCtVnjnQQbs9h1I61YGBYahB-uDD4N0QV2xN5feU04_zliqWag4nGcbMZ2Lkb1UsH2p_w8UukFJoTa0u6Aup1IyBnPKtNj804AwmxFzNH-NmM2IEYNZjazBt5cgrjc_EWZTHGF06Cmjq8Yn-lfFL6Y8mps</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sharma, Tanuj</creator><creator>Saralamma, Venu Venkatarame Gowda</creator><creator>Lee, Duk Chul</creator><creator>Imran, Mohammad Azhar</creator><creator>Choi, Jaehyuk</creator><creator>Baig, Mohammad Hassan</creator><creator>Dong, Jae-June</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20221201</creationdate><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><author>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>breasts</topic><topic>Bruton's tyrosine kinase</topic><topic>cell growth</topic><topic>computer simulation</topic><topic>enzymes</topic><topic>humans</topic><topic>inhibitory concentration 50</topic><topic>lung neoplasms</topic><topic>Machine learning</topic><topic>neoplasm cells</topic><topic>pharmacology</topic><topic>Pharmacophore</topic><topic>therapeutics</topic><topic>tyrosine</topic><topic>Virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Tanuj</creatorcontrib><creatorcontrib>Saralamma, Venu Venkatarame Gowda</creatorcontrib><creatorcontrib>Lee, Duk Chul</creatorcontrib><creatorcontrib>Imran, Mohammad Azhar</creatorcontrib><creatorcontrib>Choi, Jaehyuk</creatorcontrib><creatorcontrib>Baig, Mohammad Hassan</creatorcontrib><creatorcontrib>Dong, Jae-June</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Tanuj</au><au>Saralamma, Venu Venkatarame Gowda</au><au>Lee, Duk Chul</au><au>Imran, Mohammad Azhar</au><au>Choi, Jaehyuk</au><au>Baig, Mohammad Hassan</au><au>Dong, Jae-June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>222</volume><spage>239</spage><epage>250</epage><pages>239-250</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2022.09.151</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2022-12, Vol.222, p.239-250 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2716932037 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | breasts Bruton's tyrosine kinase cell growth computer simulation enzymes humans inhibitory concentration 50 lung neoplasms Machine learning neoplasm cells pharmacology Pharmacophore therapeutics tyrosine Virtual screening |
title | Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20structure-based%20pharmacophore%20modeling%20and%20machine%20learning%20for%20the%20identification%20of%20novel%20BTK%20inhibitors&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Sharma,%20Tanuj&rft.date=2022-12-01&rft.volume=222&rft.spage=239&rft.epage=250&rft.pages=239-250&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.09.151&rft_dat=%3Cproquest_cross%3E2716932037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716932037&rft_id=info:pmid/&rft_els_id=S0141813022020827&rfr_iscdi=true |