Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors

Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-12, Vol.222, p.239-250
Hauptverfasser: Sharma, Tanuj, Saralamma, Venu Venkatarame Gowda, Lee, Duk Chul, Imran, Mohammad Azhar, Choi, Jaehyuk, Baig, Mohammad Hassan, Dong, Jae-June
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue
container_start_page 239
container_title International journal of biological macromolecules
container_volume 222
creator Sharma, Tanuj
Saralamma, Venu Venkatarame Gowda
Lee, Duk Chul
Imran, Mohammad Azhar
Choi, Jaehyuk
Baig, Mohammad Hassan
Dong, Jae-June
description Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.
doi_str_mv 10.1016/j.ijbiomac.2022.09.151
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716932037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022020827</els_id><sourcerecordid>2716932037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EEkvpK1Q-cknqsbuJcwNWQBGVuJSz5dhjMqvEXmxvJd6ehIUznEYaff8vzXyM3YBoQUB3e2zpOFJarGulkLIVQwt7eMZ2oPuhEUKo52wn4A4aDUq8ZK9KOa7bbg96x-ohLSNFit95qfns6jljM9qCnp8mm9fSdJpSRr4kj_OG2ej5up4oIp_R5t_ZkDKvE3LyGCsFcrZSijwFHtMTzvz94xdOcaKRasrlNXsR7Fzw-s-8Yt8-fng83DcPXz99Prx7aJzqdW10GCCMndZBjIMTPXTKaYAhiGCtVnjnQQbs9h1I61YGBYahB-uDD4N0QV2xN5feU04_zliqWag4nGcbMZ2Lkb1UsH2p_w8UukFJoTa0u6Aup1IyBnPKtNj804AwmxFzNH-NmM2IEYNZjazBt5cgrjc_EWZTHGF06Cmjq8Yn-lfFL6Y8mps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716932037</pqid></control><display><type>article</type><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</creator><creatorcontrib>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</creatorcontrib><description>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.09.151</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>breasts ; Bruton's tyrosine kinase ; cell growth ; computer simulation ; enzymes ; humans ; inhibitory concentration 50 ; lung neoplasms ; Machine learning ; neoplasm cells ; pharmacology ; Pharmacophore ; therapeutics ; tyrosine ; Virtual screening</subject><ispartof>International journal of biological macromolecules, 2022-12, Vol.222, p.239-250</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</citedby><cites>FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2022.09.151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Sharma, Tanuj</creatorcontrib><creatorcontrib>Saralamma, Venu Venkatarame Gowda</creatorcontrib><creatorcontrib>Lee, Duk Chul</creatorcontrib><creatorcontrib>Imran, Mohammad Azhar</creatorcontrib><creatorcontrib>Choi, Jaehyuk</creatorcontrib><creatorcontrib>Baig, Mohammad Hassan</creatorcontrib><creatorcontrib>Dong, Jae-June</creatorcontrib><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><title>International journal of biological macromolecules</title><description>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</description><subject>breasts</subject><subject>Bruton's tyrosine kinase</subject><subject>cell growth</subject><subject>computer simulation</subject><subject>enzymes</subject><subject>humans</subject><subject>inhibitory concentration 50</subject><subject>lung neoplasms</subject><subject>Machine learning</subject><subject>neoplasm cells</subject><subject>pharmacology</subject><subject>Pharmacophore</subject><subject>therapeutics</subject><subject>tyrosine</subject><subject>Virtual screening</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EEkvpK1Q-cknqsbuJcwNWQBGVuJSz5dhjMqvEXmxvJd6ehIUznEYaff8vzXyM3YBoQUB3e2zpOFJarGulkLIVQwt7eMZ2oPuhEUKo52wn4A4aDUq8ZK9KOa7bbg96x-ohLSNFit95qfns6jljM9qCnp8mm9fSdJpSRr4kj_OG2ej5up4oIp_R5t_ZkDKvE3LyGCsFcrZSijwFHtMTzvz94xdOcaKRasrlNXsR7Fzw-s-8Yt8-fng83DcPXz99Prx7aJzqdW10GCCMndZBjIMTPXTKaYAhiGCtVnjnQQbs9h1I61YGBYahB-uDD4N0QV2xN5feU04_zliqWag4nGcbMZ2Lkb1UsH2p_w8UukFJoTa0u6Aup1IyBnPKtNj804AwmxFzNH-NmM2IEYNZjazBt5cgrjc_EWZTHGF06Cmjq8Yn-lfFL6Y8mps</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Sharma, Tanuj</creator><creator>Saralamma, Venu Venkatarame Gowda</creator><creator>Lee, Duk Chul</creator><creator>Imran, Mohammad Azhar</creator><creator>Choi, Jaehyuk</creator><creator>Baig, Mohammad Hassan</creator><creator>Dong, Jae-June</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20221201</creationdate><title>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</title><author>Sharma, Tanuj ; Saralamma, Venu Venkatarame Gowda ; Lee, Duk Chul ; Imran, Mohammad Azhar ; Choi, Jaehyuk ; Baig, Mohammad Hassan ; Dong, Jae-June</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-8f91fb688f0b9c07163c8119f0faa83e4d12fe65612acf0be0ef971adfdf92cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>breasts</topic><topic>Bruton's tyrosine kinase</topic><topic>cell growth</topic><topic>computer simulation</topic><topic>enzymes</topic><topic>humans</topic><topic>inhibitory concentration 50</topic><topic>lung neoplasms</topic><topic>Machine learning</topic><topic>neoplasm cells</topic><topic>pharmacology</topic><topic>Pharmacophore</topic><topic>therapeutics</topic><topic>tyrosine</topic><topic>Virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Tanuj</creatorcontrib><creatorcontrib>Saralamma, Venu Venkatarame Gowda</creatorcontrib><creatorcontrib>Lee, Duk Chul</creatorcontrib><creatorcontrib>Imran, Mohammad Azhar</creatorcontrib><creatorcontrib>Choi, Jaehyuk</creatorcontrib><creatorcontrib>Baig, Mohammad Hassan</creatorcontrib><creatorcontrib>Dong, Jae-June</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Tanuj</au><au>Saralamma, Venu Venkatarame Gowda</au><au>Lee, Duk Chul</au><au>Imran, Mohammad Azhar</au><au>Choi, Jaehyuk</au><au>Baig, Mohammad Hassan</au><au>Dong, Jae-June</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>222</volume><spage>239</spage><epage>250</epage><pages>239-250</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Bruton's tyrosine kinase (BTK) is a critical enzyme which is involved in multiple signaling pathways that regulate cellular survival, activation, and proliferation, making it a major cancer therapeutic target. We applied the novel integrated structure-based pharmacophore modeling, machine learning, and other in silico studies to screen the Korean chemical database (KCB) to identify the potential BTK inhibitors (BTKi). Further evaluation of these inhibitors on three different human cancer cell lines showed significant cell growth inhibitory activity. Among the 13 compounds shortlisted, four demonstrated consistent cell inhibition activity among breast, gastric, and lung cancer cells (IC50 below 3 μM). The selected compounds also showed significant kinase inhibition activity (IC50 below 5 μM). The current study suggests the potential of these inhibitors for targeting BTK malignant tumors.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2022.09.151</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2022-12, Vol.222, p.239-250
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2716932037
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects breasts
Bruton's tyrosine kinase
cell growth
computer simulation
enzymes
humans
inhibitory concentration 50
lung neoplasms
Machine learning
neoplasm cells
pharmacology
Pharmacophore
therapeutics
tyrosine
Virtual screening
title Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20structure-based%20pharmacophore%20modeling%20and%20machine%20learning%20for%20the%20identification%20of%20novel%20BTK%20inhibitors&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Sharma,%20Tanuj&rft.date=2022-12-01&rft.volume=222&rft.spage=239&rft.epage=250&rft.pages=239-250&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.09.151&rft_dat=%3Cproquest_cross%3E2716932037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716932037&rft_id=info:pmid/&rft_els_id=S0141813022020827&rfr_iscdi=true