Hot phonons and Auger related carrier heating in semiconductor optical amplifiers
We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heat...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2002-06, Vol.38 (6), p.674-681 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 6 |
container_start_page | 674 |
container_title | IEEE journal of quantum electronics |
container_volume | 38 |
creator | Fehr, J.-N. Dupertuis, M.-A. Hessler, T.P. Kappei, L. Marti, D. Salleras, F. Nomura, M.S. Deveaud, B. Emery, J.-Y. Dagens, B. |
description | We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band. |
doi_str_mv | 10.1109/JQE.2002.1005418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27165885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1005418</ieee_id><sourcerecordid>907950831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</originalsourceid><addsrcrecordid>eNqF0cFrHCEUBnAJLWSb9l7oRQJJT7PVUdfnMYS0aQmUQHuWt-okhlmd6Mwh_30Mu9DSQ3qSB7_3ge8j5CNna86Z-fLj9mrdM9avOWNKcjgiK64UdFxz8YasGOPQGW70MXlX60MbpQS2IrfXeabTfU45VYrJ04vlLhRawohz8NRhKbHN9wHnmO5oTLSGXXQ5-cXNudA8zdHhSHE3jXFotL4nbwcca_hweE_I769Xvy6vu5uf375fXtx0TmqYO1CuB8VgE6T3oEEIr-VW6e1WaO4NAoTgA3LnkQ0SjFODQbU1XkiUClGckM_73KnkxyXU2e5idWEcMYW8VGuYNi1f8CbPX5U9CAaSs_9DzTcKQDV4-g98yEtJ7bsWoB0WNrxviO2RK7nWEgY7lbjD8mQ5sy-d2daZfenMHjprK2eHXKztqkPB5GL9syc2Rkklmvu0dzGE8FfsPuUZnoGe3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884488612</pqid></control><display><type>article</type><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</creator><creatorcontrib>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</creatorcontrib><description>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2002.1005418</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Augers ; Carriers ; Charge carrier density ; Density ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heating ; High speed optical techniques ; Laser optical systems: design and operation ; Mathematical models ; Nonlinear optics ; Optics ; Phonons ; Physics ; Radiative recombination ; Resonators, cavities, amplifiers, arrays, and rings ; Semiconductor lasers ; Semiconductor optical amplifiers ; Spontaneous emission ; Temperature ; Valence band</subject><ispartof>IEEE journal of quantum electronics, 2002-06, Vol.38 (6), p.674-681</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</citedby><cites>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1005418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1005418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13695453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fehr, J.-N.</creatorcontrib><creatorcontrib>Dupertuis, M.-A.</creatorcontrib><creatorcontrib>Hessler, T.P.</creatorcontrib><creatorcontrib>Kappei, L.</creatorcontrib><creatorcontrib>Marti, D.</creatorcontrib><creatorcontrib>Salleras, F.</creatorcontrib><creatorcontrib>Nomura, M.S.</creatorcontrib><creatorcontrib>Deveaud, B.</creatorcontrib><creatorcontrib>Emery, J.-Y.</creatorcontrib><creatorcontrib>Dagens, B.</creatorcontrib><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</description><subject>Augers</subject><subject>Carriers</subject><subject>Charge carrier density</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heating</subject><subject>High speed optical techniques</subject><subject>Laser optical systems: design and operation</subject><subject>Mathematical models</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Radiative recombination</subject><subject>Resonators, cavities, amplifiers, arrays, and rings</subject><subject>Semiconductor lasers</subject><subject>Semiconductor optical amplifiers</subject><subject>Spontaneous emission</subject><subject>Temperature</subject><subject>Valence band</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFrHCEUBnAJLWSb9l7oRQJJT7PVUdfnMYS0aQmUQHuWt-okhlmd6Mwh_30Mu9DSQ3qSB7_3ge8j5CNna86Z-fLj9mrdM9avOWNKcjgiK64UdFxz8YasGOPQGW70MXlX60MbpQS2IrfXeabTfU45VYrJ04vlLhRawohz8NRhKbHN9wHnmO5oTLSGXXQ5-cXNudA8zdHhSHE3jXFotL4nbwcca_hweE_I769Xvy6vu5uf375fXtx0TmqYO1CuB8VgE6T3oEEIr-VW6e1WaO4NAoTgA3LnkQ0SjFODQbU1XkiUClGckM_73KnkxyXU2e5idWEcMYW8VGuYNi1f8CbPX5U9CAaSs_9DzTcKQDV4-g98yEtJ7bsWoB0WNrxviO2RK7nWEgY7lbjD8mQ5sy-d2daZfenMHjprK2eHXKztqkPB5GL9syc2Rkklmvu0dzGE8FfsPuUZnoGe3A</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Fehr, J.-N.</creator><creator>Dupertuis, M.-A.</creator><creator>Hessler, T.P.</creator><creator>Kappei, L.</creator><creator>Marti, D.</creator><creator>Salleras, F.</creator><creator>Nomura, M.S.</creator><creator>Deveaud, B.</creator><creator>Emery, J.-Y.</creator><creator>Dagens, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><author>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Augers</topic><topic>Carriers</topic><topic>Charge carrier density</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heating</topic><topic>High speed optical techniques</topic><topic>Laser optical systems: design and operation</topic><topic>Mathematical models</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Radiative recombination</topic><topic>Resonators, cavities, amplifiers, arrays, and rings</topic><topic>Semiconductor lasers</topic><topic>Semiconductor optical amplifiers</topic><topic>Spontaneous emission</topic><topic>Temperature</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehr, J.-N.</creatorcontrib><creatorcontrib>Dupertuis, M.-A.</creatorcontrib><creatorcontrib>Hessler, T.P.</creatorcontrib><creatorcontrib>Kappei, L.</creatorcontrib><creatorcontrib>Marti, D.</creatorcontrib><creatorcontrib>Salleras, F.</creatorcontrib><creatorcontrib>Nomura, M.S.</creatorcontrib><creatorcontrib>Deveaud, B.</creatorcontrib><creatorcontrib>Emery, J.-Y.</creatorcontrib><creatorcontrib>Dagens, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fehr, J.-N.</au><au>Dupertuis, M.-A.</au><au>Hessler, T.P.</au><au>Kappei, L.</au><au>Marti, D.</au><au>Salleras, F.</au><au>Nomura, M.S.</au><au>Deveaud, B.</au><au>Emery, J.-Y.</au><au>Dagens, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>38</volume><issue>6</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2002.1005418</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9197 |
ispartof | IEEE journal of quantum electronics, 2002-06, Vol.38 (6), p.674-681 |
issn | 0018-9197 1558-1713 |
language | eng |
recordid | cdi_proquest_miscellaneous_27165885 |
source | IEEE Electronic Library (IEL) |
subjects | Augers Carriers Charge carrier density Density Exact sciences and technology Fundamental areas of phenomenology (including applications) Heating High speed optical techniques Laser optical systems: design and operation Mathematical models Nonlinear optics Optics Phonons Physics Radiative recombination Resonators, cavities, amplifiers, arrays, and rings Semiconductor lasers Semiconductor optical amplifiers Spontaneous emission Temperature Valence band |
title | Hot phonons and Auger related carrier heating in semiconductor optical amplifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20phonons%20and%20Auger%20related%20carrier%20heating%20in%20semiconductor%20optical%20amplifiers&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Fehr,%20J.-N.&rft.date=2002-06-01&rft.volume=38&rft.issue=6&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2002.1005418&rft_dat=%3Cproquest_RIE%3E907950831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884488612&rft_id=info:pmid/&rft_ieee_id=1005418&rfr_iscdi=true |