Hot phonons and Auger related carrier heating in semiconductor optical amplifiers

We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2002-06, Vol.38 (6), p.674-681
Hauptverfasser: Fehr, J.-N., Dupertuis, M.-A., Hessler, T.P., Kappei, L., Marti, D., Salleras, F., Nomura, M.S., Deveaud, B., Emery, J.-Y., Dagens, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 6
container_start_page 674
container_title IEEE journal of quantum electronics
container_volume 38
creator Fehr, J.-N.
Dupertuis, M.-A.
Hessler, T.P.
Kappei, L.
Marti, D.
Salleras, F.
Nomura, M.S.
Deveaud, B.
Emery, J.-Y.
Dagens, B.
description We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.
doi_str_mv 10.1109/JQE.2002.1005418
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27165885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1005418</ieee_id><sourcerecordid>907950831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</originalsourceid><addsrcrecordid>eNqF0cFrHCEUBnAJLWSb9l7oRQJJT7PVUdfnMYS0aQmUQHuWt-okhlmd6Mwh_30Mu9DSQ3qSB7_3ge8j5CNna86Z-fLj9mrdM9avOWNKcjgiK64UdFxz8YasGOPQGW70MXlX60MbpQS2IrfXeabTfU45VYrJ04vlLhRawohz8NRhKbHN9wHnmO5oTLSGXXQ5-cXNudA8zdHhSHE3jXFotL4nbwcca_hweE_I769Xvy6vu5uf375fXtx0TmqYO1CuB8VgE6T3oEEIr-VW6e1WaO4NAoTgA3LnkQ0SjFODQbU1XkiUClGckM_73KnkxyXU2e5idWEcMYW8VGuYNi1f8CbPX5U9CAaSs_9DzTcKQDV4-g98yEtJ7bsWoB0WNrxviO2RK7nWEgY7lbjD8mQ5sy-d2daZfenMHjprK2eHXKztqkPB5GL9syc2Rkklmvu0dzGE8FfsPuUZnoGe3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884488612</pqid></control><display><type>article</type><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><source>IEEE Electronic Library (IEL)</source><creator>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</creator><creatorcontrib>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</creatorcontrib><description>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</description><identifier>ISSN: 0018-9197</identifier><identifier>EISSN: 1558-1713</identifier><identifier>DOI: 10.1109/JQE.2002.1005418</identifier><identifier>CODEN: IEJQA7</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Augers ; Carriers ; Charge carrier density ; Density ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heating ; High speed optical techniques ; Laser optical systems: design and operation ; Mathematical models ; Nonlinear optics ; Optics ; Phonons ; Physics ; Radiative recombination ; Resonators, cavities, amplifiers, arrays, and rings ; Semiconductor lasers ; Semiconductor optical amplifiers ; Spontaneous emission ; Temperature ; Valence band</subject><ispartof>IEEE journal of quantum electronics, 2002-06, Vol.38 (6), p.674-681</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</citedby><cites>FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1005418$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1005418$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13695453$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fehr, J.-N.</creatorcontrib><creatorcontrib>Dupertuis, M.-A.</creatorcontrib><creatorcontrib>Hessler, T.P.</creatorcontrib><creatorcontrib>Kappei, L.</creatorcontrib><creatorcontrib>Marti, D.</creatorcontrib><creatorcontrib>Salleras, F.</creatorcontrib><creatorcontrib>Nomura, M.S.</creatorcontrib><creatorcontrib>Deveaud, B.</creatorcontrib><creatorcontrib>Emery, J.-Y.</creatorcontrib><creatorcontrib>Dagens, B.</creatorcontrib><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><title>IEEE journal of quantum electronics</title><addtitle>JQE</addtitle><description>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</description><subject>Augers</subject><subject>Carriers</subject><subject>Charge carrier density</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heating</subject><subject>High speed optical techniques</subject><subject>Laser optical systems: design and operation</subject><subject>Mathematical models</subject><subject>Nonlinear optics</subject><subject>Optics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Radiative recombination</subject><subject>Resonators, cavities, amplifiers, arrays, and rings</subject><subject>Semiconductor lasers</subject><subject>Semiconductor optical amplifiers</subject><subject>Spontaneous emission</subject><subject>Temperature</subject><subject>Valence band</subject><issn>0018-9197</issn><issn>1558-1713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0cFrHCEUBnAJLWSb9l7oRQJJT7PVUdfnMYS0aQmUQHuWt-okhlmd6Mwh_30Mu9DSQ3qSB7_3ge8j5CNna86Z-fLj9mrdM9avOWNKcjgiK64UdFxz8YasGOPQGW70MXlX60MbpQS2IrfXeabTfU45VYrJ04vlLhRawohz8NRhKbHN9wHnmO5oTLSGXXQ5-cXNudA8zdHhSHE3jXFotL4nbwcca_hweE_I769Xvy6vu5uf375fXtx0TmqYO1CuB8VgE6T3oEEIr-VW6e1WaO4NAoTgA3LnkQ0SjFODQbU1XkiUClGckM_73KnkxyXU2e5idWEcMYW8VGuYNi1f8CbPX5U9CAaSs_9DzTcKQDV4-g98yEtJ7bsWoB0WNrxviO2RK7nWEgY7lbjD8mQ5sy-d2daZfenMHjprK2eHXKztqkPB5GL9syc2Rkklmvu0dzGE8FfsPuUZnoGe3A</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Fehr, J.-N.</creator><creator>Dupertuis, M.-A.</creator><creator>Hessler, T.P.</creator><creator>Kappei, L.</creator><creator>Marti, D.</creator><creator>Salleras, F.</creator><creator>Nomura, M.S.</creator><creator>Deveaud, B.</creator><creator>Emery, J.-Y.</creator><creator>Dagens, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020601</creationdate><title>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</title><author>Fehr, J.-N. ; Dupertuis, M.-A. ; Hessler, T.P. ; Kappei, L. ; Marti, D. ; Salleras, F. ; Nomura, M.S. ; Deveaud, B. ; Emery, J.-Y. ; Dagens, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-85c285086e4dd87833d74b57bb371d9a88eedea1cda0f489c5f9a5b9d34a45aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Augers</topic><topic>Carriers</topic><topic>Charge carrier density</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heating</topic><topic>High speed optical techniques</topic><topic>Laser optical systems: design and operation</topic><topic>Mathematical models</topic><topic>Nonlinear optics</topic><topic>Optics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Radiative recombination</topic><topic>Resonators, cavities, amplifiers, arrays, and rings</topic><topic>Semiconductor lasers</topic><topic>Semiconductor optical amplifiers</topic><topic>Spontaneous emission</topic><topic>Temperature</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehr, J.-N.</creatorcontrib><creatorcontrib>Dupertuis, M.-A.</creatorcontrib><creatorcontrib>Hessler, T.P.</creatorcontrib><creatorcontrib>Kappei, L.</creatorcontrib><creatorcontrib>Marti, D.</creatorcontrib><creatorcontrib>Salleras, F.</creatorcontrib><creatorcontrib>Nomura, M.S.</creatorcontrib><creatorcontrib>Deveaud, B.</creatorcontrib><creatorcontrib>Emery, J.-Y.</creatorcontrib><creatorcontrib>Dagens, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fehr, J.-N.</au><au>Dupertuis, M.-A.</au><au>Hessler, T.P.</au><au>Kappei, L.</au><au>Marti, D.</au><au>Salleras, F.</au><au>Nomura, M.S.</au><au>Deveaud, B.</au><au>Emery, J.-Y.</au><au>Dagens, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot phonons and Auger related carrier heating in semiconductor optical amplifiers</atitle><jtitle>IEEE journal of quantum electronics</jtitle><stitle>JQE</stitle><date>2002-06-01</date><risdate>2002</risdate><volume>38</volume><issue>6</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0018-9197</issn><eissn>1558-1713</eissn><coden>IEJQA7</coden><abstract>We have directly measured the carrier temperature in semiconductor optical amplifiers (SOAs) via spontaneous emission and we demonstrate an unexpectedly high carrier temperature. The direct correlation of the temperature increase with the carrier density suggests Auger recombination as the main heating mechanism. We have developed a model based on rate equations for the total energy density of electrons, holes, and longitudinal-optical phonons. This model allows us to explain the thermal behavior of carrier and phonon populations. The strong heating observed is shown to be due to the combined effects of hot phonon and Auger recombination in the valence band. We also observe an evolution of the Auger process, as the density is increased, from cubic to square dependence with coefficients C/sub 3/ = 0.9 10/sup -28/ cm/sup 6/ s/sup -1/ and C/sub 2/ = 2.4 10/sup -10/ cm/sup 3/ s/sup -1/. This change is explained by the hole quasi-Fermi level entering the valence band.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JQE.2002.1005418</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9197
ispartof IEEE journal of quantum electronics, 2002-06, Vol.38 (6), p.674-681
issn 0018-9197
1558-1713
language eng
recordid cdi_proquest_miscellaneous_27165885
source IEEE Electronic Library (IEL)
subjects Augers
Carriers
Charge carrier density
Density
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heating
High speed optical techniques
Laser optical systems: design and operation
Mathematical models
Nonlinear optics
Optics
Phonons
Physics
Radiative recombination
Resonators, cavities, amplifiers, arrays, and rings
Semiconductor lasers
Semiconductor optical amplifiers
Spontaneous emission
Temperature
Valence band
title Hot phonons and Auger related carrier heating in semiconductor optical amplifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20phonons%20and%20Auger%20related%20carrier%20heating%20in%20semiconductor%20optical%20amplifiers&rft.jtitle=IEEE%20journal%20of%20quantum%20electronics&rft.au=Fehr,%20J.-N.&rft.date=2002-06-01&rft.volume=38&rft.issue=6&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0018-9197&rft.eissn=1558-1713&rft.coden=IEJQA7&rft_id=info:doi/10.1109/JQE.2002.1005418&rft_dat=%3Cproquest_RIE%3E907950831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884488612&rft_id=info:pmid/&rft_ieee_id=1005418&rfr_iscdi=true