Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants
Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-09, Vol.13 (38), p.8893-8901 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8901 |
---|---|
container_issue | 38 |
container_start_page | 8893 |
container_title | The journal of physical chemistry letters |
container_volume | 13 |
creator | Xiong, Danyang Zhao, Xiaoyu Luo, Song Zhang, John Z. H. Duan, Lili |
description | Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs. |
doi_str_mv | 10.1021/acs.jpclett.2c02428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716090032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716090032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a158t-7610d3d1d9d515dfa4013a4803636d2b3ee59f108d4a034a1e3abd714ff1a22b3</originalsourceid><addsrcrecordid>eNpNUctO40AQtNAiwQJfwKWPXBymZ_w8RhGPSGSRCHC1Op42cTSeCZ5xJG78wv7HftV-yTqEw56qVVWqVqmi6BLFBIXEa6r9ZLOtDYcwkbWQiSyOolMskyLOsUh__HefRD-93wiRlaLIT6M_C2e4Hgz1sOB6Tbb1HbgGwprhl7PxzO3IsA3w2JMxH_BM_RsH1rCcPi1H9fXv528Ji23vYG7X7aoNroflnsQ8kxLIapi5bjsECq2zZGDqPXvf7TPHP_Pg4aZpuA7tju0oAL1Ra32AxRf0TB28Ut-SDf48Om7IeL74xrPo5fbmeXYfPzzezWfTh5gwLUKcZyi00qhLnWKqG0oEKkoKoTKVablSzGnZoCh0QkIlhKxopXNMmgZJjvpZdHXIHWu9D-xD1bW-ZmPIsht8JXPMRCmEkqP1-mAdJ6g2bujHir5CUe13qb7Iwy7V9y7qH9nfh4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716090032</pqid></control><display><type>article</type><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><source>ACS Publications</source><creator>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</creator><creatorcontrib>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</creatorcontrib><description>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02428</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2022-09, Vol.13 (38), p.8893-8901</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4612-1863 ; 0000-0002-0911-1888 ; 0000-0002-1293-6784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02428$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02428$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xiong, Danyang</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Luo, Song</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><creatorcontrib>Duan, Lili</creatorcontrib><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctO40AQtNAiwQJfwKWPXBymZ_w8RhGPSGSRCHC1Op42cTSeCZ5xJG78wv7HftV-yTqEw56qVVWqVqmi6BLFBIXEa6r9ZLOtDYcwkbWQiSyOolMskyLOsUh__HefRD-93wiRlaLIT6M_C2e4Hgz1sOB6Tbb1HbgGwprhl7PxzO3IsA3w2JMxH_BM_RsH1rCcPi1H9fXv528Ji23vYG7X7aoNroflnsQ8kxLIapi5bjsECq2zZGDqPXvf7TPHP_Pg4aZpuA7tju0oAL1Ra32AxRf0TB28Ut-SDf48Om7IeL74xrPo5fbmeXYfPzzezWfTh5gwLUKcZyi00qhLnWKqG0oEKkoKoTKVablSzGnZoCh0QkIlhKxopXNMmgZJjvpZdHXIHWu9D-xD1bW-ZmPIsht8JXPMRCmEkqP1-mAdJ6g2bujHir5CUe13qb7Iwy7V9y7qH9nfh4o</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Xiong, Danyang</creator><creator>Zhao, Xiaoyu</creator><creator>Luo, Song</creator><creator>Zhang, John Z. H.</creator><creator>Duan, Lili</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4612-1863</orcidid><orcidid>https://orcid.org/0000-0002-0911-1888</orcidid><orcidid>https://orcid.org/0000-0002-1293-6784</orcidid></search><sort><creationdate>20220929</creationdate><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><author>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a158t-7610d3d1d9d515dfa4013a4803636d2b3ee59f108d4a034a1e3abd714ff1a22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Danyang</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Luo, Song</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><creatorcontrib>Duan, Lili</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Danyang</au><au>Zhao, Xiaoyu</au><au>Luo, Song</au><au>Zhang, John Z. H.</au><au>Duan, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-09-29</date><risdate>2022</risdate><volume>13</volume><issue>38</issue><spage>8893</spage><epage>8901</epage><pages>8893-8901</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.2c02428</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4612-1863</orcidid><orcidid>https://orcid.org/0000-0002-0911-1888</orcidid><orcidid>https://orcid.org/0000-0002-1293-6784</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2022-09, Vol.13 (38), p.8893-8901 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2716090032 |
source | ACS Publications |
subjects | Physical Insights into Materials and Molecular Properties |
title | Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20the%20Non-Covalent%20Orally%20Targeted%20SARS-CoV%E2%80%912%20Mpro%20Inhibitor%20S%E2%80%91217622%20and%20Computational%20Assessment%20of%20Its%20Effectiveness%20against%20Mainstream%20Variants&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Xiong,%20Danyang&rft.date=2022-09-29&rft.volume=13&rft.issue=38&rft.spage=8893&rft.epage=8901&rft.pages=8893-8901&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02428&rft_dat=%3Cproquest_acs_j%3E2716090032%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716090032&rft_id=info:pmid/&rfr_iscdi=true |