Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants

Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-09, Vol.13 (38), p.8893-8901
Hauptverfasser: Xiong, Danyang, Zhao, Xiaoyu, Luo, Song, Zhang, John Z. H., Duan, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8901
container_issue 38
container_start_page 8893
container_title The journal of physical chemistry letters
container_volume 13
creator Xiong, Danyang
Zhao, Xiaoyu
Luo, Song
Zhang, John Z. H.
Duan, Lili
description Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.
doi_str_mv 10.1021/acs.jpclett.2c02428
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2716090032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716090032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a158t-7610d3d1d9d515dfa4013a4803636d2b3ee59f108d4a034a1e3abd714ff1a22b3</originalsourceid><addsrcrecordid>eNpNUctO40AQtNAiwQJfwKWPXBymZ_w8RhGPSGSRCHC1Op42cTSeCZ5xJG78wv7HftV-yTqEw56qVVWqVqmi6BLFBIXEa6r9ZLOtDYcwkbWQiSyOolMskyLOsUh__HefRD-93wiRlaLIT6M_C2e4Hgz1sOB6Tbb1HbgGwprhl7PxzO3IsA3w2JMxH_BM_RsH1rCcPi1H9fXv528Ji23vYG7X7aoNroflnsQ8kxLIapi5bjsECq2zZGDqPXvf7TPHP_Pg4aZpuA7tju0oAL1Ra32AxRf0TB28Ut-SDf48Om7IeL74xrPo5fbmeXYfPzzezWfTh5gwLUKcZyi00qhLnWKqG0oEKkoKoTKVablSzGnZoCh0QkIlhKxopXNMmgZJjvpZdHXIHWu9D-xD1bW-ZmPIsht8JXPMRCmEkqP1-mAdJ6g2bujHir5CUe13qb7Iwy7V9y7qH9nfh4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716090032</pqid></control><display><type>article</type><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><source>ACS Publications</source><creator>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</creator><creatorcontrib>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</creatorcontrib><description>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02428</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2022-09, Vol.13 (38), p.8893-8901</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4612-1863 ; 0000-0002-0911-1888 ; 0000-0002-1293-6784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02428$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02428$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xiong, Danyang</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Luo, Song</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><creatorcontrib>Duan, Lili</creatorcontrib><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctO40AQtNAiwQJfwKWPXBymZ_w8RhGPSGSRCHC1Op42cTSeCZ5xJG78wv7HftV-yTqEw56qVVWqVqmi6BLFBIXEa6r9ZLOtDYcwkbWQiSyOolMskyLOsUh__HefRD-93wiRlaLIT6M_C2e4Hgz1sOB6Tbb1HbgGwprhl7PxzO3IsA3w2JMxH_BM_RsH1rCcPi1H9fXv528Ji23vYG7X7aoNroflnsQ8kxLIapi5bjsECq2zZGDqPXvf7TPHP_Pg4aZpuA7tju0oAL1Ra32AxRf0TB28Ut-SDf48Om7IeL74xrPo5fbmeXYfPzzezWfTh5gwLUKcZyi00qhLnWKqG0oEKkoKoTKVablSzGnZoCh0QkIlhKxopXNMmgZJjvpZdHXIHWu9D-xD1bW-ZmPIsht8JXPMRCmEkqP1-mAdJ6g2bujHir5CUe13qb7Iwy7V9y7qH9nfh4o</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Xiong, Danyang</creator><creator>Zhao, Xiaoyu</creator><creator>Luo, Song</creator><creator>Zhang, John Z. H.</creator><creator>Duan, Lili</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4612-1863</orcidid><orcidid>https://orcid.org/0000-0002-0911-1888</orcidid><orcidid>https://orcid.org/0000-0002-1293-6784</orcidid></search><sort><creationdate>20220929</creationdate><title>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</title><author>Xiong, Danyang ; Zhao, Xiaoyu ; Luo, Song ; Zhang, John Z. H. ; Duan, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a158t-7610d3d1d9d515dfa4013a4803636d2b3ee59f108d4a034a1e3abd714ff1a22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Danyang</creatorcontrib><creatorcontrib>Zhao, Xiaoyu</creatorcontrib><creatorcontrib>Luo, Song</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><creatorcontrib>Duan, Lili</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Danyang</au><au>Zhao, Xiaoyu</au><au>Luo, Song</au><au>Zhang, John Z. H.</au><au>Duan, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-09-29</date><risdate>2022</risdate><volume>13</volume><issue>38</issue><spage>8893</spage><epage>8901</epage><pages>8893-8901</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Convenient and efficient therapeutic agents are urgently needed to block the continued spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the mechanism for the novel orally targeted SARS-CoV-2 main protease (Mpro) inhibitor S-217622 is revealed through a molecular dynamics simulation. The difference in the movement modes of the S-217622–Mpro complex and apo-Mpro suggested S-217622 could inhibit the motility intensity of Mpro, thus maintaining their stable binding. Subsequent energy calculations showed that the P2 pharmacophore possessed the highest energy contribution among the three pharmacophores of S-217622. Additionally, hot-spot residues H41, M165, C145, E166, and H163 have strong interactions with S-217622. To further investigate the resistance of S-217622 to six mainstream variants, the binding modes of S-217622 with these variants were elucidated. The subtle differences in energy compared to that of the wild type implied that the binding patterns of these systems were similar, and S-217622 still inhibited these variants. We hope this work will provide theoretical insights for optimizing novel targeted Mpro drugs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.2c02428</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4612-1863</orcidid><orcidid>https://orcid.org/0000-0002-0911-1888</orcidid><orcidid>https://orcid.org/0000-0002-1293-6784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-09, Vol.13 (38), p.8893-8901
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2716090032
source ACS Publications
subjects Physical Insights into Materials and Molecular Properties
title Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV‑2 Mpro Inhibitor S‑217622 and Computational Assessment of Its Effectiveness against Mainstream Variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20the%20Non-Covalent%20Orally%20Targeted%20SARS-CoV%E2%80%912%20Mpro%20Inhibitor%20S%E2%80%91217622%20and%20Computational%20Assessment%20of%20Its%20Effectiveness%20against%20Mainstream%20Variants&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Xiong,%20Danyang&rft.date=2022-09-29&rft.volume=13&rft.issue=38&rft.spage=8893&rft.epage=8901&rft.pages=8893-8901&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02428&rft_dat=%3Cproquest_acs_j%3E2716090032%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716090032&rft_id=info:pmid/&rfr_iscdi=true