Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine
Gespeichert in:
Veröffentlicht in: | European journal of pharmacology 2022-10, Vol.933, p.175260-175260, Article 175260 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175260 |
---|---|
container_issue | |
container_start_page | 175260 |
container_title | European journal of pharmacology |
container_volume | 933 |
creator | Li, Dongna Hu, Jing Zhang, Lin Li, Lili Yin, Qingsheng Shi, Jiangwei Guo, Hong Zhang, Yanjun Zhuang, Pengwei |
description | |
doi_str_mv | 10.1016/j.ejphar.2022.175260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715793805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715793805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-d7f9a3149351ff11c0b5e9d3b3b240f060381539acb0fe5f8f24c6c0f91d75513</originalsourceid><addsrcrecordid>eNotUU1v1DAQtSqQWAr_gIOPXLId2_Em7g0tH0Vqy6WcLccZd71K7GB7QfvP-HnEbE8zI7037808Qj4w2DJgu5vjFo_LwaQtB863rJN8B1dkw_pONdAx_opsAFjbcKXUG_I25yMASMXlhvz9jLjQCU0KPjxTE0Y6G3vwAakPBafJP2OweEsf8Q-1cV5OxRQfg5noHEecKqmgPQT_64SZupjo6LONvzGdaXS0HLDSBh_-02g6TSusylTDq1Qcz8HM3lK7zsYWTD4Xb3MlPyUz-he1ffWUkT7g6O3aviOvnZkyvn-p1-Tn1y9P-7vm_se37_tP943lfVuasXPKCNYqIZlzjFkYJKpRDGLgLTjYgeiZFMrYARxK1zve2p0Fp9jYScnENfl42bukWE8sel7vWx9jAsZT1rxjslOiB7lC2wvUpphzQqeX5GeTzpqBrkHpo74EpWtQ-hKU-Aer344s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715793805</pqid></control><display><type>article</type><title>Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Dongna ; Hu, Jing ; Zhang, Lin ; Li, Lili ; Yin, Qingsheng ; Shi, Jiangwei ; Guo, Hong ; Zhang, Yanjun ; Zhuang, Pengwei</creator><creatorcontrib>Li, Dongna ; Hu, Jing ; Zhang, Lin ; Li, Lili ; Yin, Qingsheng ; Shi, Jiangwei ; Guo, Hong ; Zhang, Yanjun ; Zhuang, Pengwei</creatorcontrib><identifier>ISSN: 0014-2999</identifier><identifier>EISSN: 1879-0712</identifier><identifier>DOI: 10.1016/j.ejphar.2022.175260</identifier><language>eng</language><ispartof>European journal of pharmacology, 2022-10, Vol.933, p.175260-175260, Article 175260</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-d7f9a3149351ff11c0b5e9d3b3b240f060381539acb0fe5f8f24c6c0f91d75513</citedby><cites>FETCH-LOGICAL-c284t-d7f9a3149351ff11c0b5e9d3b3b240f060381539acb0fe5f8f24c6c0f91d75513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Li, Dongna</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Yin, Qingsheng</creatorcontrib><creatorcontrib>Shi, Jiangwei</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Zhang, Yanjun</creatorcontrib><creatorcontrib>Zhuang, Pengwei</creatorcontrib><title>Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine</title><title>European journal of pharmacology</title><issn>0014-2999</issn><issn>1879-0712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotUU1v1DAQtSqQWAr_gIOPXLId2_Em7g0tH0Vqy6WcLccZd71K7GB7QfvP-HnEbE8zI7037808Qj4w2DJgu5vjFo_LwaQtB863rJN8B1dkw_pONdAx_opsAFjbcKXUG_I25yMASMXlhvz9jLjQCU0KPjxTE0Y6G3vwAakPBafJP2OweEsf8Q-1cV5OxRQfg5noHEecKqmgPQT_64SZupjo6LONvzGdaXS0HLDSBh_-02g6TSusylTDq1Qcz8HM3lK7zsYWTD4Xb3MlPyUz-he1ffWUkT7g6O3aviOvnZkyvn-p1-Tn1y9P-7vm_se37_tP943lfVuasXPKCNYqIZlzjFkYJKpRDGLgLTjYgeiZFMrYARxK1zve2p0Fp9jYScnENfl42bukWE8sel7vWx9jAsZT1rxjslOiB7lC2wvUpphzQqeX5GeTzpqBrkHpo74EpWtQ-hKU-Aer344s</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Li, Dongna</creator><creator>Hu, Jing</creator><creator>Zhang, Lin</creator><creator>Li, Lili</creator><creator>Yin, Qingsheng</creator><creator>Shi, Jiangwei</creator><creator>Guo, Hong</creator><creator>Zhang, Yanjun</creator><creator>Zhuang, Pengwei</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221015</creationdate><title>Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine</title><author>Li, Dongna ; Hu, Jing ; Zhang, Lin ; Li, Lili ; Yin, Qingsheng ; Shi, Jiangwei ; Guo, Hong ; Zhang, Yanjun ; Zhuang, Pengwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-d7f9a3149351ff11c0b5e9d3b3b240f060381539acb0fe5f8f24c6c0f91d75513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongna</creatorcontrib><creatorcontrib>Hu, Jing</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Yin, Qingsheng</creatorcontrib><creatorcontrib>Shi, Jiangwei</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><creatorcontrib>Zhang, Yanjun</creatorcontrib><creatorcontrib>Zhuang, Pengwei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dongna</au><au>Hu, Jing</au><au>Zhang, Lin</au><au>Li, Lili</au><au>Yin, Qingsheng</au><au>Shi, Jiangwei</au><au>Guo, Hong</au><au>Zhang, Yanjun</au><au>Zhuang, Pengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine</atitle><jtitle>European journal of pharmacology</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>933</volume><spage>175260</spage><epage>175260</epage><pages>175260-175260</pages><artnum>175260</artnum><issn>0014-2999</issn><eissn>1879-0712</eissn><doi>10.1016/j.ejphar.2022.175260</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2999 |
ispartof | European journal of pharmacology, 2022-10, Vol.933, p.175260-175260, Article 175260 |
issn | 0014-2999 1879-0712 |
language | eng |
recordid | cdi_proquest_miscellaneous_2715793805 |
source | Access via ScienceDirect (Elsevier) |
title | Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20machine%20intelligence:%20New%20computational%20modeling%20techniques%20for%20discovery%20of%20the%20combination%20rules%20and%20pharmacodynamic%20characteristics%20of%20Traditional%20Chinese%20Medicine&rft.jtitle=European%20journal%20of%20pharmacology&rft.au=Li,%20Dongna&rft.date=2022-10-15&rft.volume=933&rft.spage=175260&rft.epage=175260&rft.pages=175260-175260&rft.artnum=175260&rft.issn=0014-2999&rft.eissn=1879-0712&rft_id=info:doi/10.1016/j.ejphar.2022.175260&rft_dat=%3Cproquest_cross%3E2715793805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715793805&rft_id=info:pmid/&rfr_iscdi=true |