Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy
Unit‐cell‐thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-11, Vol.34 (45), p.e2206066-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 45 |
container_start_page | e2206066 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Kim, Jihoon Park, Anseong Kim, Joodeok Kwak, Seung Jae Lee, Jae Yoon Lee, Donghoon Kim, Sebin Choi, Back Kyu Kim, Sungin Kwag, Jimin Kim, Younhwa Jeon, Sungho Lee, Won Chul Hyeon, Taeghwan Lee, Chul‐Ho Lee, Won Bo Park, Jungwon |
description | Unit‐cell‐thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2. Investigating these factors requires a direct real‐time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid‐phase transmission electron microscopy (LPTEM). Time‐dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2.
In situ electrochemical liquid‐phase transmission electron microscopy (LPTEM) facilitates real‐time observation of the H2 evolution reaction (HER) on MoS2 monolayer. Time‐series LPTEM shows sequential activation, H2 bubble formation, and electrolyte flow on different types of catalytic active sites. Directionality of H2 bubbling and competitive wetting between the bubbles and electrolyte on catalyst surface significantly affect the HER activity of the active sites. |
doi_str_mv | 10.1002/adma.202206066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715793193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715793193</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2666-f7efc3877258c395b5d73e53680ab6103cb795a0a7646fb88b7233488c4e04233</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhC0EEuXnytkSFy4pazu242PVlh-pFUiFc-QkjjBK49ROinJDPAHPyJOQFsSBy-6O9M1qpEHogsCYANBrXaz1mAKlIECIAzQinJIoBsUP0QgU45EScXKMTkJ4BQA1UCP08ZAF47e6ta7GrsR3FM-3rur2WtcFnlcmb72r-tbgmS3LLuzJGi_dig6jdpXujcdZj-9rvLJthxd209ni6_3z8UUHg5-8rsPahr3x991gt7l3IXdNf4aOSl0Fc_67T9HzzfxpehctHm7vp5NF1FAhRFRKU-YskZLyJGeKZ7yQzHAmEtCZIMDyTCquQUsRizJLkkxSxuIkyWMD8XCeoqufv413m86ENh1C5aaqdG1cF1IqCZeKEbVDL_-hr67z9ZBuoFjMY0Y4DJT6od5sZfq08XatfZ8SSHd9pLs-0r8-0slsOflT7BuxRIHV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734543150</pqid></control><display><type>article</type><title>Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Jihoon ; Park, Anseong ; Kim, Joodeok ; Kwak, Seung Jae ; Lee, Jae Yoon ; Lee, Donghoon ; Kim, Sebin ; Choi, Back Kyu ; Kim, Sungin ; Kwag, Jimin ; Kim, Younhwa ; Jeon, Sungho ; Lee, Won Chul ; Hyeon, Taeghwan ; Lee, Chul‐Ho ; Lee, Won Bo ; Park, Jungwon</creator><creatorcontrib>Kim, Jihoon ; Park, Anseong ; Kim, Joodeok ; Kwak, Seung Jae ; Lee, Jae Yoon ; Lee, Donghoon ; Kim, Sebin ; Choi, Back Kyu ; Kim, Sungin ; Kwag, Jimin ; Kim, Younhwa ; Jeon, Sungho ; Lee, Won Chul ; Hyeon, Taeghwan ; Lee, Chul‐Ho ; Lee, Won Bo ; Park, Jungwon</creatorcontrib><description>Unit‐cell‐thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2. Investigating these factors requires a direct real‐time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid‐phase transmission electron microscopy (LPTEM). Time‐dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2.
In situ electrochemical liquid‐phase transmission electron microscopy (LPTEM) facilitates real‐time observation of the H2 evolution reaction (HER) on MoS2 monolayer. Time‐series LPTEM shows sequential activation, H2 bubble formation, and electrolyte flow on different types of catalytic active sites. Directionality of H2 bubbling and competitive wetting between the bubbles and electrolyte on catalyst surface significantly affect the HER activity of the active sites.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202206066</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Catalytic activity ; Diffusion ; Electrocatalysts ; electrolyte insertion ; Electrolytes ; H 2 bubble formation ; hydrogen evolution reaction (HER) ; Hydrogen evolution reactions ; Molecular interactions ; Molybdenum disulfide ; molybdenum sulfide (MoS 2) ; Time dependence ; Transmission electron microscopy</subject><ispartof>Advanced materials (Weinheim), 2022-11, Vol.34 (45), p.e2206066-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2927-4331 ; 0000-0003-2760-2610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202206066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202206066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Jihoon</creatorcontrib><creatorcontrib>Park, Anseong</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kwak, Seung Jae</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Lee, Donghoon</creatorcontrib><creatorcontrib>Kim, Sebin</creatorcontrib><creatorcontrib>Choi, Back Kyu</creatorcontrib><creatorcontrib>Kim, Sungin</creatorcontrib><creatorcontrib>Kwag, Jimin</creatorcontrib><creatorcontrib>Kim, Younhwa</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Lee, Chul‐Ho</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><title>Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy</title><title>Advanced materials (Weinheim)</title><description>Unit‐cell‐thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2. Investigating these factors requires a direct real‐time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid‐phase transmission electron microscopy (LPTEM). Time‐dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2.
In situ electrochemical liquid‐phase transmission electron microscopy (LPTEM) facilitates real‐time observation of the H2 evolution reaction (HER) on MoS2 monolayer. Time‐series LPTEM shows sequential activation, H2 bubble formation, and electrolyte flow on different types of catalytic active sites. Directionality of H2 bubbling and competitive wetting between the bubbles and electrolyte on catalyst surface significantly affect the HER activity of the active sites.</description><subject>2D materials</subject><subject>Catalytic activity</subject><subject>Diffusion</subject><subject>Electrocatalysts</subject><subject>electrolyte insertion</subject><subject>Electrolytes</subject><subject>H 2 bubble formation</subject><subject>hydrogen evolution reaction (HER)</subject><subject>Hydrogen evolution reactions</subject><subject>Molecular interactions</subject><subject>Molybdenum disulfide</subject><subject>molybdenum sulfide (MoS 2)</subject><subject>Time dependence</subject><subject>Transmission electron microscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OwzAQhC0EEuXnytkSFy4pazu242PVlh-pFUiFc-QkjjBK49ROinJDPAHPyJOQFsSBy-6O9M1qpEHogsCYANBrXaz1mAKlIECIAzQinJIoBsUP0QgU45EScXKMTkJ4BQA1UCP08ZAF47e6ta7GrsR3FM-3rur2WtcFnlcmb72r-tbgmS3LLuzJGi_dig6jdpXujcdZj-9rvLJthxd209ni6_3z8UUHg5-8rsPahr3x991gt7l3IXdNf4aOSl0Fc_67T9HzzfxpehctHm7vp5NF1FAhRFRKU-YskZLyJGeKZ7yQzHAmEtCZIMDyTCquQUsRizJLkkxSxuIkyWMD8XCeoqufv413m86ENh1C5aaqdG1cF1IqCZeKEbVDL_-hr67z9ZBuoFjMY0Y4DJT6od5sZfq08XatfZ8SSHd9pLs-0r8-0slsOflT7BuxRIHV</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kim, Jihoon</creator><creator>Park, Anseong</creator><creator>Kim, Joodeok</creator><creator>Kwak, Seung Jae</creator><creator>Lee, Jae Yoon</creator><creator>Lee, Donghoon</creator><creator>Kim, Sebin</creator><creator>Choi, Back Kyu</creator><creator>Kim, Sungin</creator><creator>Kwag, Jimin</creator><creator>Kim, Younhwa</creator><creator>Jeon, Sungho</creator><creator>Lee, Won Chul</creator><creator>Hyeon, Taeghwan</creator><creator>Lee, Chul‐Ho</creator><creator>Lee, Won Bo</creator><creator>Park, Jungwon</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0003-2760-2610</orcidid></search><sort><creationdate>20221101</creationdate><title>Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy</title><author>Kim, Jihoon ; Park, Anseong ; Kim, Joodeok ; Kwak, Seung Jae ; Lee, Jae Yoon ; Lee, Donghoon ; Kim, Sebin ; Choi, Back Kyu ; Kim, Sungin ; Kwag, Jimin ; Kim, Younhwa ; Jeon, Sungho ; Lee, Won Chul ; Hyeon, Taeghwan ; Lee, Chul‐Ho ; Lee, Won Bo ; Park, Jungwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2666-f7efc3877258c395b5d73e53680ab6103cb795a0a7646fb88b7233488c4e04233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>Catalytic activity</topic><topic>Diffusion</topic><topic>Electrocatalysts</topic><topic>electrolyte insertion</topic><topic>Electrolytes</topic><topic>H 2 bubble formation</topic><topic>hydrogen evolution reaction (HER)</topic><topic>Hydrogen evolution reactions</topic><topic>Molecular interactions</topic><topic>Molybdenum disulfide</topic><topic>molybdenum sulfide (MoS 2)</topic><topic>Time dependence</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jihoon</creatorcontrib><creatorcontrib>Park, Anseong</creatorcontrib><creatorcontrib>Kim, Joodeok</creatorcontrib><creatorcontrib>Kwak, Seung Jae</creatorcontrib><creatorcontrib>Lee, Jae Yoon</creatorcontrib><creatorcontrib>Lee, Donghoon</creatorcontrib><creatorcontrib>Kim, Sebin</creatorcontrib><creatorcontrib>Choi, Back Kyu</creatorcontrib><creatorcontrib>Kim, Sungin</creatorcontrib><creatorcontrib>Kwag, Jimin</creatorcontrib><creatorcontrib>Kim, Younhwa</creatorcontrib><creatorcontrib>Jeon, Sungho</creatorcontrib><creatorcontrib>Lee, Won Chul</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Lee, Chul‐Ho</creatorcontrib><creatorcontrib>Lee, Won Bo</creatorcontrib><creatorcontrib>Park, Jungwon</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jihoon</au><au>Park, Anseong</au><au>Kim, Joodeok</au><au>Kwak, Seung Jae</au><au>Lee, Jae Yoon</au><au>Lee, Donghoon</au><au>Kim, Sebin</au><au>Choi, Back Kyu</au><au>Kim, Sungin</au><au>Kwag, Jimin</au><au>Kim, Younhwa</au><au>Jeon, Sungho</au><au>Lee, Won Chul</au><au>Hyeon, Taeghwan</au><au>Lee, Chul‐Ho</au><au>Lee, Won Bo</au><au>Park, Jungwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>45</issue><spage>e2206066</spage><epage>n/a</epage><pages>e2206066-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Unit‐cell‐thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2. Investigating these factors requires a direct real‐time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid‐phase transmission electron microscopy (LPTEM). Time‐dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2.
In situ electrochemical liquid‐phase transmission electron microscopy (LPTEM) facilitates real‐time observation of the H2 evolution reaction (HER) on MoS2 monolayer. Time‐series LPTEM shows sequential activation, H2 bubble formation, and electrolyte flow on different types of catalytic active sites. Directionality of H2 bubbling and competitive wetting between the bubbles and electrolyte on catalyst surface significantly affect the HER activity of the active sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202206066</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2927-4331</orcidid><orcidid>https://orcid.org/0000-0003-2760-2610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-11, Vol.34 (45), p.e2206066-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2715793193 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Catalytic activity Diffusion Electrocatalysts electrolyte insertion Electrolytes H 2 bubble formation hydrogen evolution reaction (HER) Hydrogen evolution reactions Molecular interactions Molybdenum disulfide molybdenum sulfide (MoS 2) Time dependence Transmission electron microscopy |
title | Observation of H2 Evolution and Electrolyte Diffusion on MoS2 Monolayer by In Situ Liquid‐Phase Transmission Electron Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20H2%20Evolution%20and%20Electrolyte%20Diffusion%20on%20MoS2%20Monolayer%20by%20In%20Situ%20Liquid%E2%80%90Phase%20Transmission%20Electron%20Microscopy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Kim,%20Jihoon&rft.date=2022-11-01&rft.volume=34&rft.issue=45&rft.spage=e2206066&rft.epage=n/a&rft.pages=e2206066-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202206066&rft_dat=%3Cproquest_wiley%3E2715793193%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734543150&rft_id=info:pmid/&rfr_iscdi=true |