Teosinte confers specific alleles and yield potential to maize improvement

Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022-10, Vol.135 (10), p.3545-3562
Hauptverfasser: Wang, Qingjun, Liao, Zhengqiao, Zhu, Chuntao, Gou, Xiangjian, Liu, Yaxi, Xie, Wubing, Wu, Fengkai, Feng, Xuanjun, Xu, Jie, Li, Jingwei, Lu, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3562
container_issue 10
container_start_page 3545
container_title Theoretical and applied genetics
container_volume 135
creator Wang, Qingjun
Liao, Zhengqiao
Zhu, Chuntao
Gou, Xiangjian
Liu, Yaxi
Xie, Wubing
Wu, Fengkai
Feng, Xuanjun
Xu, Jie
Li, Jingwei
Lu, Yanli
description Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/ Zea diploperennis ) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that Zm00001eb352570 and Zm00001eb352580 , both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.
doi_str_mv 10.1007/s00122-022-04199-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715792314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720137346</galeid><sourcerecordid>A720137346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQx4MoeJ7-Az4FfNGHrclk02weS_FHS0HQ-hyy2cmRkt2cSU6sf71ZTignRYZhYPh8JzP5EvKaszPOmHpfGOMAHVuz51p38gnZ8F5AB9DDU7JhrGedVBKekxel3DHGQDKxIde3mEpYKlKXFo-50LJHF3xw1MaIEQu1y0TvA8aJ7lPFpQYbaU10tuE30jDvc_qJc-u_JM-8jQVf_a1b8v3jh9vLz93Nl09Xlxc3neulqB3C6C1KHKFt49U42Wl0A3MDh16fS1R8coMG5WHy4KzXfBDaOs0VHzUfUWzJ2-Pc9vKPA5Zq5lAcxmgXTIdiQHGpNIh2_pa8-Qe9S4e8tO1WalA9cGAP1M5GNGHxqWbr1qHmQgHjQon-vFFnj1AtJpxD-zz0ofVPBO9OBI2p-Kvu7KEUc_Xt6ykLR9blVEpGb_Y5zDbfG87M6rA5OmzYmqvDRjaROIpKg5cd5ofr_qP6A3mcpo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718742120</pqid></control><display><type>article</type><title>Teosinte confers specific alleles and yield potential to maize improvement</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</creator><creatorcontrib>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</creatorcontrib><description>Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/ Zea diploperennis ) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that Zm00001eb352570 and Zm00001eb352580 , both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04199-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Combining ability ; Corn ; Diseases and pests ; DNA binding proteins ; Gene mapping ; Genetic aspects ; Genetic resources ; Genetic transcription ; Germplasm ; Growth ; Inbreeding ; Life Sciences ; Original Article ; Phenotypic variations ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Quantitative trait loci ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Transcription factors ; Zea luxurians</subject><ispartof>Theoretical and applied genetics, 2022-10, Vol.135 (10), p.3545-3562</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</citedby><cites>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</cites><orcidid>0000-0002-1894-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04199-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04199-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Liao, Zhengqiao</creatorcontrib><creatorcontrib>Zhu, Chuntao</creatorcontrib><creatorcontrib>Gou, Xiangjian</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Xie, Wubing</creatorcontrib><creatorcontrib>Wu, Fengkai</creatorcontrib><creatorcontrib>Feng, Xuanjun</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Jingwei</creatorcontrib><creatorcontrib>Lu, Yanli</creatorcontrib><title>Teosinte confers specific alleles and yield potential to maize improvement</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/ Zea diploperennis ) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that Zm00001eb352570 and Zm00001eb352580 , both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Combining ability</subject><subject>Corn</subject><subject>Diseases and pests</subject><subject>DNA binding proteins</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic resources</subject><subject>Genetic transcription</subject><subject>Germplasm</subject><subject>Growth</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotypic variations</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Quantitative trait loci</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Transcription factors</subject><subject>Zea luxurians</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9rFDEQx4MoeJ7-Az4FfNGHrclk02weS_FHS0HQ-hyy2cmRkt2cSU6sf71ZTignRYZhYPh8JzP5EvKaszPOmHpfGOMAHVuz51p38gnZ8F5AB9DDU7JhrGedVBKekxel3DHGQDKxIde3mEpYKlKXFo-50LJHF3xw1MaIEQu1y0TvA8aJ7lPFpQYbaU10tuE30jDvc_qJc-u_JM-8jQVf_a1b8v3jh9vLz93Nl09Xlxc3neulqB3C6C1KHKFt49U42Wl0A3MDh16fS1R8coMG5WHy4KzXfBDaOs0VHzUfUWzJ2-Pc9vKPA5Zq5lAcxmgXTIdiQHGpNIh2_pa8-Qe9S4e8tO1WalA9cGAP1M5GNGHxqWbr1qHmQgHjQon-vFFnj1AtJpxD-zz0ofVPBO9OBI2p-Kvu7KEUc_Xt6ykLR9blVEpGb_Y5zDbfG87M6rA5OmzYmqvDRjaROIpKg5cd5ofr_qP6A3mcpo0</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Qingjun</creator><creator>Liao, Zhengqiao</creator><creator>Zhu, Chuntao</creator><creator>Gou, Xiangjian</creator><creator>Liu, Yaxi</creator><creator>Xie, Wubing</creator><creator>Wu, Fengkai</creator><creator>Feng, Xuanjun</creator><creator>Xu, Jie</creator><creator>Li, Jingwei</creator><creator>Lu, Yanli</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1894-9156</orcidid></search><sort><creationdate>20221001</creationdate><title>Teosinte confers specific alleles and yield potential to maize improvement</title><author>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Combining ability</topic><topic>Corn</topic><topic>Diseases and pests</topic><topic>DNA binding proteins</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic resources</topic><topic>Genetic transcription</topic><topic>Germplasm</topic><topic>Growth</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotypic variations</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Quantitative trait loci</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Transcription factors</topic><topic>Zea luxurians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Liao, Zhengqiao</creatorcontrib><creatorcontrib>Zhu, Chuntao</creatorcontrib><creatorcontrib>Gou, Xiangjian</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Xie, Wubing</creatorcontrib><creatorcontrib>Wu, Fengkai</creatorcontrib><creatorcontrib>Feng, Xuanjun</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Jingwei</creatorcontrib><creatorcontrib>Lu, Yanli</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingjun</au><au>Liao, Zhengqiao</au><au>Zhu, Chuntao</au><au>Gou, Xiangjian</au><au>Liu, Yaxi</au><au>Xie, Wubing</au><au>Wu, Fengkai</au><au>Feng, Xuanjun</au><au>Xu, Jie</au><au>Li, Jingwei</au><au>Lu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teosinte confers specific alleles and yield potential to maize improvement</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>135</volume><issue>10</issue><spage>3545</spage><epage>3562</epage><pages>3545-3562</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/ Zea diploperennis ) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that Zm00001eb352570 and Zm00001eb352580 , both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00122-022-04199-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1894-9156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-10, Vol.135 (10), p.3545-3562
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2715792314
source SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Analysis
Biochemistry
Biomedical and Life Sciences
Biotechnology
Combining ability
Corn
Diseases and pests
DNA binding proteins
Gene mapping
Genetic aspects
Genetic resources
Genetic transcription
Germplasm
Growth
Inbreeding
Life Sciences
Original Article
Phenotypic variations
Plant Biochemistry
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Quantitative trait loci
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Transcription factors
Zea luxurians
title Teosinte confers specific alleles and yield potential to maize improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teosinte%20confers%20specific%20alleles%20and%20yield%20potential%20to%20maize%20improvement&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Wang,%20Qingjun&rft.date=2022-10-01&rft.volume=135&rft.issue=10&rft.spage=3545&rft.epage=3562&rft.pages=3545-3562&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04199-5&rft_dat=%3Cgale_proqu%3EA720137346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718742120&rft_id=info:pmid/&rft_galeid=A720137346&rfr_iscdi=true