Teosinte confers specific alleles and yield potential to maize improvement
Key message Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified. Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding p...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-10, Vol.135 (10), p.3545-3562 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3562 |
---|---|
container_issue | 10 |
container_start_page | 3545 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Wang, Qingjun Liao, Zhengqiao Zhu, Chuntao Gou, Xiangjian Liu, Yaxi Xie, Wubing Wu, Fengkai Feng, Xuanjun Xu, Jie Li, Jingwei Lu, Yanli |
description | Key message
Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified.
Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/
Zea diploperennis
) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that
Zm00001eb352570
and
Zm00001eb352580
, both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding. |
doi_str_mv | 10.1007/s00122-022-04199-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715792314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720137346</galeid><sourcerecordid>A720137346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQx4MoeJ7-Az4FfNGHrclk02weS_FHS0HQ-hyy2cmRkt2cSU6sf71ZTignRYZhYPh8JzP5EvKaszPOmHpfGOMAHVuz51p38gnZ8F5AB9DDU7JhrGedVBKekxel3DHGQDKxIde3mEpYKlKXFo-50LJHF3xw1MaIEQu1y0TvA8aJ7lPFpQYbaU10tuE30jDvc_qJc-u_JM-8jQVf_a1b8v3jh9vLz93Nl09Xlxc3neulqB3C6C1KHKFt49U42Wl0A3MDh16fS1R8coMG5WHy4KzXfBDaOs0VHzUfUWzJ2-Pc9vKPA5Zq5lAcxmgXTIdiQHGpNIh2_pa8-Qe9S4e8tO1WalA9cGAP1M5GNGHxqWbr1qHmQgHjQon-vFFnj1AtJpxD-zz0ofVPBO9OBI2p-Kvu7KEUc_Xt6ykLR9blVEpGb_Y5zDbfG87M6rA5OmzYmqvDRjaROIpKg5cd5ofr_qP6A3mcpo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718742120</pqid></control><display><type>article</type><title>Teosinte confers specific alleles and yield potential to maize improvement</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</creator><creatorcontrib>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</creatorcontrib><description>Key message
Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified.
Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/
Zea diploperennis
) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that
Zm00001eb352570
and
Zm00001eb352580
, both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04199-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Combining ability ; Corn ; Diseases and pests ; DNA binding proteins ; Gene mapping ; Genetic aspects ; Genetic resources ; Genetic transcription ; Germplasm ; Growth ; Inbreeding ; Life Sciences ; Original Article ; Phenotypic variations ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Quantitative trait loci ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Transcription factors ; Zea luxurians</subject><ispartof>Theoretical and applied genetics, 2022-10, Vol.135 (10), p.3545-3562</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</citedby><cites>FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</cites><orcidid>0000-0002-1894-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04199-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04199-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Liao, Zhengqiao</creatorcontrib><creatorcontrib>Zhu, Chuntao</creatorcontrib><creatorcontrib>Gou, Xiangjian</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Xie, Wubing</creatorcontrib><creatorcontrib>Wu, Fengkai</creatorcontrib><creatorcontrib>Feng, Xuanjun</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Jingwei</creatorcontrib><creatorcontrib>Lu, Yanli</creatorcontrib><title>Teosinte confers specific alleles and yield potential to maize improvement</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><description>Key message
Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified.
Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/
Zea diploperennis
) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that
Zm00001eb352570
and
Zm00001eb352580
, both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Combining ability</subject><subject>Corn</subject><subject>Diseases and pests</subject><subject>DNA binding proteins</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic resources</subject><subject>Genetic transcription</subject><subject>Germplasm</subject><subject>Growth</subject><subject>Inbreeding</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Phenotypic variations</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Quantitative trait loci</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Transcription factors</subject><subject>Zea luxurians</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kd9rFDEQx4MoeJ7-Az4FfNGHrclk02weS_FHS0HQ-hyy2cmRkt2cSU6sf71ZTignRYZhYPh8JzP5EvKaszPOmHpfGOMAHVuz51p38gnZ8F5AB9DDU7JhrGedVBKekxel3DHGQDKxIde3mEpYKlKXFo-50LJHF3xw1MaIEQu1y0TvA8aJ7lPFpQYbaU10tuE30jDvc_qJc-u_JM-8jQVf_a1b8v3jh9vLz93Nl09Xlxc3neulqB3C6C1KHKFt49U42Wl0A3MDh16fS1R8coMG5WHy4KzXfBDaOs0VHzUfUWzJ2-Pc9vKPA5Zq5lAcxmgXTIdiQHGpNIh2_pa8-Qe9S4e8tO1WalA9cGAP1M5GNGHxqWbr1qHmQgHjQon-vFFnj1AtJpxD-zz0ofVPBO9OBI2p-Kvu7KEUc_Xt6ykLR9blVEpGb_Y5zDbfG87M6rA5OmzYmqvDRjaROIpKg5cd5ofr_qP6A3mcpo0</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wang, Qingjun</creator><creator>Liao, Zhengqiao</creator><creator>Zhu, Chuntao</creator><creator>Gou, Xiangjian</creator><creator>Liu, Yaxi</creator><creator>Xie, Wubing</creator><creator>Wu, Fengkai</creator><creator>Feng, Xuanjun</creator><creator>Xu, Jie</creator><creator>Li, Jingwei</creator><creator>Lu, Yanli</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1894-9156</orcidid></search><sort><creationdate>20221001</creationdate><title>Teosinte confers specific alleles and yield potential to maize improvement</title><author>Wang, Qingjun ; Liao, Zhengqiao ; Zhu, Chuntao ; Gou, Xiangjian ; Liu, Yaxi ; Xie, Wubing ; Wu, Fengkai ; Feng, Xuanjun ; Xu, Jie ; Li, Jingwei ; Lu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-e2bfae5eb2752f7bdadbc80c8124965e71dc8927f2df2caf91839ac9171b91be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Combining ability</topic><topic>Corn</topic><topic>Diseases and pests</topic><topic>DNA binding proteins</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic resources</topic><topic>Genetic transcription</topic><topic>Germplasm</topic><topic>Growth</topic><topic>Inbreeding</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Phenotypic variations</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Quantitative trait loci</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Transcription factors</topic><topic>Zea luxurians</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingjun</creatorcontrib><creatorcontrib>Liao, Zhengqiao</creatorcontrib><creatorcontrib>Zhu, Chuntao</creatorcontrib><creatorcontrib>Gou, Xiangjian</creatorcontrib><creatorcontrib>Liu, Yaxi</creatorcontrib><creatorcontrib>Xie, Wubing</creatorcontrib><creatorcontrib>Wu, Fengkai</creatorcontrib><creatorcontrib>Feng, Xuanjun</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Li, Jingwei</creatorcontrib><creatorcontrib>Lu, Yanli</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingjun</au><au>Liao, Zhengqiao</au><au>Zhu, Chuntao</au><au>Gou, Xiangjian</au><au>Liu, Yaxi</au><au>Xie, Wubing</au><au>Wu, Fengkai</au><au>Feng, Xuanjun</au><au>Xu, Jie</au><au>Li, Jingwei</au><au>Lu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teosinte confers specific alleles and yield potential to maize improvement</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>135</volume><issue>10</issue><spage>3545</spage><epage>3562</epage><pages>3545-3562</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
Teosinte improves maize grain yield and broadens the maize germplasm. Seventy-one quantitative trait loci associated with 24 differential traits between maize and teosinte were identified.
Maize is a major cereal crop with a narrow germplasm that has limited its production and breeding progress. Teosinte, an ancestor of maize, provides valuable genetic resources for maize breeding. To identify the favorable alien alleles in teosinte and its yield potential for maize breeding, 4 backcrossed maize-teosinte recombinant inbred line (RIL) populations were cultivated under five conditions. A North Carolina mating design II experiment was conducted on inbred lines with B73 and Mo17 pedigree backgrounds to analyze their combining ability. Abundant phenotypic variation on 26 traits of four RIL populations were found, of which barren tip length, kernel height, and test weight showed positive genetic improvement potential. The hybrid FM132 (BD138/MP116) showed a superior grain yield to that of the check, with an average yield gain of 4.86%. Moreover, inbred lines BD138 and MP048 showed a higher general grain yield combining ability than those of their corresponding checks. We screened 4,964,439 high-quality single-nucleotide polymorphisms in the BD (B73/
Zea diploperennis
) RIL population for bin construction and used 2322 bin markers for genetic map construction and quantitative trait loci (QTL) mapping. Via inclusive composite interval mapping, 71 QTL associated with 24 differential traits were identified. Gene annotation and transcriptional expression suggested that
Zm00001eb352570
and
Zm00001eb352580
, both annotated as ethylene-responsive transcription factors, were key candidate genes that regulate ear height and the ratio of ear to plant height. Our results indicate that teosinte could broaden the narrow maize germplasm, improve yield potential, and provide desirable alleles for maize breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00122-022-04199-5</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1894-9156</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-10, Vol.135 (10), p.3545-3562 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2715792314 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alleles Analysis Biochemistry Biomedical and Life Sciences Biotechnology Combining ability Corn Diseases and pests DNA binding proteins Gene mapping Genetic aspects Genetic resources Genetic transcription Germplasm Growth Inbreeding Life Sciences Original Article Phenotypic variations Plant Biochemistry Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Quantitative trait loci Single nucleotide polymorphisms Single-nucleotide polymorphism Transcription factors Zea luxurians |
title | Teosinte confers specific alleles and yield potential to maize improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teosinte%20confers%20specific%20alleles%20and%20yield%20potential%20to%20maize%20improvement&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Wang,%20Qingjun&rft.date=2022-10-01&rft.volume=135&rft.issue=10&rft.spage=3545&rft.epage=3562&rft.pages=3545-3562&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04199-5&rft_dat=%3Cgale_proqu%3EA720137346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718742120&rft_id=info:pmid/&rft_galeid=A720137346&rfr_iscdi=true |