Marginal semiparametric transformation models for clustered multivariate competing risks data

Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2022-11, Vol.41 (26), p.5349-5364
Hauptverfasser: He, Yizeng, Kim, Soyoung, Mao, Lu, Ahn, Kwang Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5364
container_issue 26
container_start_page 5349
container_title Statistics in medicine
container_volume 41
creator He, Yizeng
Kim, Soyoung
Mao, Lu
Ahn, Kwang Woo
description Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.
doi_str_mv 10.1002/sim.9573
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715790894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726828373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7Bv0ACXrx05mNN0qMMPwYOD-pRyts0HZlNO5NU2X9v56aC4On98fLwHB6ETikZU0LYZbBunKWS76EhJZlMCEvVPhoSJmUiJE0H6CiEJSGUpkweogEXlErKsyF6mYNf2AZqHIyzK_DgTPRW4-ihCVXrHUTbNti1pakD7h9Y112IxpsSu66O9h28hWiwbt3KRNsssLfhNeASIhyjgwrqYE52d4Seb66fpnfJ_cPtbHp1n2iuOE9ExstUpMWEMiMkKwRTArTROlWV0EKA5JRVRBf95gpUSUEVTGdU6omgacFH6GLrXfn2rTMh5s4GbeoaGtN2IWd9A5kRlU169PwPumw73wfYUEwoprjkv0Lt2xC8qfKVtw78Oqck3yTP--T5JnmPnu2EXeFM-QN-N-6BZAt82Nqs_xXlj7P5l_AT5UCLSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726828373</pqid></control><display><type>article</type><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</creator><creatorcontrib>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</creatorcontrib><description>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9573</identifier><identifier>PMID: 36117139</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>competing risks data ; Hematopoietic Stem Cell Transplantation ; Humans ; Incidence ; Infections ; multivariate outcome ; Probability ; Proportional Hazards Models ; semiparametric transformation model ; Stem Cell Transplantation ; Transplants &amp; implants</subject><ispartof>Statistics in medicine, 2022-11, Vol.41 (26), p.5349-5364</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</citedby><cites>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</cites><orcidid>0000-0003-1404-0575 ; 0000-0003-4567-8037 ; 0000-0002-8626-9822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9573$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9573$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36117139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yizeng</creatorcontrib><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Ahn, Kwang Woo</creatorcontrib><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</description><subject>competing risks data</subject><subject>Hematopoietic Stem Cell Transplantation</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infections</subject><subject>multivariate outcome</subject><subject>Probability</subject><subject>Proportional Hazards Models</subject><subject>semiparametric transformation model</subject><subject>Stem Cell Transplantation</subject><subject>Transplants &amp; implants</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4Mobk7Bv0ACXrx05mNN0qMMPwYOD-pRyts0HZlNO5NU2X9v56aC4On98fLwHB6ETikZU0LYZbBunKWS76EhJZlMCEvVPhoSJmUiJE0H6CiEJSGUpkweogEXlErKsyF6mYNf2AZqHIyzK_DgTPRW4-ihCVXrHUTbNti1pakD7h9Y112IxpsSu66O9h28hWiwbt3KRNsssLfhNeASIhyjgwrqYE52d4Seb66fpnfJ_cPtbHp1n2iuOE9ExstUpMWEMiMkKwRTArTROlWV0EKA5JRVRBf95gpUSUEVTGdU6omgacFH6GLrXfn2rTMh5s4GbeoaGtN2IWd9A5kRlU169PwPumw73wfYUEwoprjkv0Lt2xC8qfKVtw78Oqck3yTP--T5JnmPnu2EXeFM-QN-N-6BZAt82Nqs_xXlj7P5l_AT5UCLSA</recordid><startdate>20221120</startdate><enddate>20221120</enddate><creator>He, Yizeng</creator><creator>Kim, Soyoung</creator><creator>Mao, Lu</creator><creator>Ahn, Kwang Woo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1404-0575</orcidid><orcidid>https://orcid.org/0000-0003-4567-8037</orcidid><orcidid>https://orcid.org/0000-0002-8626-9822</orcidid></search><sort><creationdate>20221120</creationdate><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><author>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>competing risks data</topic><topic>Hematopoietic Stem Cell Transplantation</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infections</topic><topic>multivariate outcome</topic><topic>Probability</topic><topic>Proportional Hazards Models</topic><topic>semiparametric transformation model</topic><topic>Stem Cell Transplantation</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yizeng</creatorcontrib><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Ahn, Kwang Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yizeng</au><au>Kim, Soyoung</au><au>Mao, Lu</au><au>Ahn, Kwang Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal semiparametric transformation models for clustered multivariate competing risks data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-11-20</date><risdate>2022</risdate><volume>41</volume><issue>26</issue><spage>5349</spage><epage>5364</epage><pages>5349-5364</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36117139</pmid><doi>10.1002/sim.9573</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1404-0575</orcidid><orcidid>https://orcid.org/0000-0003-4567-8037</orcidid><orcidid>https://orcid.org/0000-0002-8626-9822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2022-11, Vol.41 (26), p.5349-5364
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2715790894
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects competing risks data
Hematopoietic Stem Cell Transplantation
Humans
Incidence
Infections
multivariate outcome
Probability
Proportional Hazards Models
semiparametric transformation model
Stem Cell Transplantation
Transplants & implants
title Marginal semiparametric transformation models for clustered multivariate competing risks data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20semiparametric%20transformation%20models%20for%20clustered%20multivariate%20competing%20risks%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=He,%20Yizeng&rft.date=2022-11-20&rft.volume=41&rft.issue=26&rft.spage=5349&rft.epage=5364&rft.pages=5349-5364&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9573&rft_dat=%3Cproquest_cross%3E2726828373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726828373&rft_id=info:pmid/36117139&rfr_iscdi=true