Marginal semiparametric transformation models for clustered multivariate competing risks data
Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may exp...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2022-11, Vol.41 (26), p.5349-5364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5364 |
---|---|
container_issue | 26 |
container_start_page | 5349 |
container_title | Statistics in medicine |
container_volume | 41 |
creator | He, Yizeng Kim, Soyoung Mao, Lu Ahn, Kwang Woo |
description | Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes. |
doi_str_mv | 10.1002/sim.9573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715790894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726828373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7Bv0ACXrx05mNN0qMMPwYOD-pRyts0HZlNO5NU2X9v56aC4On98fLwHB6ETikZU0LYZbBunKWS76EhJZlMCEvVPhoSJmUiJE0H6CiEJSGUpkweogEXlErKsyF6mYNf2AZqHIyzK_DgTPRW4-ihCVXrHUTbNti1pakD7h9Y112IxpsSu66O9h28hWiwbt3KRNsssLfhNeASIhyjgwrqYE52d4Seb66fpnfJ_cPtbHp1n2iuOE9ExstUpMWEMiMkKwRTArTROlWV0EKA5JRVRBf95gpUSUEVTGdU6omgacFH6GLrXfn2rTMh5s4GbeoaGtN2IWd9A5kRlU169PwPumw73wfYUEwoprjkv0Lt2xC8qfKVtw78Oqck3yTP--T5JnmPnu2EXeFM-QN-N-6BZAt82Nqs_xXlj7P5l_AT5UCLSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726828373</pqid></control><display><type>article</type><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</creator><creatorcontrib>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</creatorcontrib><description>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9573</identifier><identifier>PMID: 36117139</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>competing risks data ; Hematopoietic Stem Cell Transplantation ; Humans ; Incidence ; Infections ; multivariate outcome ; Probability ; Proportional Hazards Models ; semiparametric transformation model ; Stem Cell Transplantation ; Transplants & implants</subject><ispartof>Statistics in medicine, 2022-11, Vol.41 (26), p.5349-5364</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</citedby><cites>FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</cites><orcidid>0000-0003-1404-0575 ; 0000-0003-4567-8037 ; 0000-0002-8626-9822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9573$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9573$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36117139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yizeng</creatorcontrib><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Ahn, Kwang Woo</creatorcontrib><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</description><subject>competing risks data</subject><subject>Hematopoietic Stem Cell Transplantation</subject><subject>Humans</subject><subject>Incidence</subject><subject>Infections</subject><subject>multivariate outcome</subject><subject>Probability</subject><subject>Proportional Hazards Models</subject><subject>semiparametric transformation model</subject><subject>Stem Cell Transplantation</subject><subject>Transplants & implants</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4Mobk7Bv0ACXrx05mNN0qMMPwYOD-pRyts0HZlNO5NU2X9v56aC4On98fLwHB6ETikZU0LYZbBunKWS76EhJZlMCEvVPhoSJmUiJE0H6CiEJSGUpkweogEXlErKsyF6mYNf2AZqHIyzK_DgTPRW4-ihCVXrHUTbNti1pakD7h9Y112IxpsSu66O9h28hWiwbt3KRNsssLfhNeASIhyjgwrqYE52d4Seb66fpnfJ_cPtbHp1n2iuOE9ExstUpMWEMiMkKwRTArTROlWV0EKA5JRVRBf95gpUSUEVTGdU6omgacFH6GLrXfn2rTMh5s4GbeoaGtN2IWd9A5kRlU169PwPumw73wfYUEwoprjkv0Lt2xC8qfKVtw78Oqck3yTP--T5JnmPnu2EXeFM-QN-N-6BZAt82Nqs_xXlj7P5l_AT5UCLSA</recordid><startdate>20221120</startdate><enddate>20221120</enddate><creator>He, Yizeng</creator><creator>Kim, Soyoung</creator><creator>Mao, Lu</creator><creator>Ahn, Kwang Woo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1404-0575</orcidid><orcidid>https://orcid.org/0000-0003-4567-8037</orcidid><orcidid>https://orcid.org/0000-0002-8626-9822</orcidid></search><sort><creationdate>20221120</creationdate><title>Marginal semiparametric transformation models for clustered multivariate competing risks data</title><author>He, Yizeng ; Kim, Soyoung ; Mao, Lu ; Ahn, Kwang Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3833-693d565b412e672b6286acecc58f6c66a7312f0cbc6638a8d1a8b2c917c4615b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>competing risks data</topic><topic>Hematopoietic Stem Cell Transplantation</topic><topic>Humans</topic><topic>Incidence</topic><topic>Infections</topic><topic>multivariate outcome</topic><topic>Probability</topic><topic>Proportional Hazards Models</topic><topic>semiparametric transformation model</topic><topic>Stem Cell Transplantation</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yizeng</creatorcontrib><creatorcontrib>Kim, Soyoung</creatorcontrib><creatorcontrib>Mao, Lu</creatorcontrib><creatorcontrib>Ahn, Kwang Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yizeng</au><au>Kim, Soyoung</au><au>Mao, Lu</au><au>Ahn, Kwang Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal semiparametric transformation models for clustered multivariate competing risks data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2022-11-20</date><risdate>2022</risdate><volume>41</volume><issue>26</issue><spage>5349</spage><epage>5364</epage><pages>5349-5364</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Multivariate survival models are often used in studying multiple outcomes for right‐censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36117139</pmid><doi>10.1002/sim.9573</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1404-0575</orcidid><orcidid>https://orcid.org/0000-0003-4567-8037</orcidid><orcidid>https://orcid.org/0000-0002-8626-9822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2022-11, Vol.41 (26), p.5349-5364 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2715790894 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | competing risks data Hematopoietic Stem Cell Transplantation Humans Incidence Infections multivariate outcome Probability Proportional Hazards Models semiparametric transformation model Stem Cell Transplantation Transplants & implants |
title | Marginal semiparametric transformation models for clustered multivariate competing risks data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20semiparametric%20transformation%20models%20for%20clustered%20multivariate%20competing%20risks%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=He,%20Yizeng&rft.date=2022-11-20&rft.volume=41&rft.issue=26&rft.spage=5349&rft.epage=5364&rft.pages=5349-5364&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9573&rft_dat=%3Cproquest_cross%3E2726828373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726828373&rft_id=info:pmid/36117139&rfr_iscdi=true |