Strain Control to Stabilize Perovskite Solar Cells

Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-11, Vol.61 (48), p.e202212268-n/a
Hauptverfasser: Zhang, Hui, Park, Nam‐Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e202212268
container_title Angewandte Chemie International Edition
container_volume 61
creator Zhang, Hui
Park, Nam‐Gyu
description Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties. Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.
doi_str_mv 10.1002/anie.202212268
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715790323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737457661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwUvXjqTl6ZNj6NMHQwVpueQpm-Q2TUzaZX515sxUfDi6X2H3-_x8RFyyeiEUQo3urM4AQrAAHJ5REZMAEt5UfDjmDPO00IKdkrOQlhHXkqajwgse69tl1Su671rk94ly17XtrWfmDyhd-_h1faYLF2rfVJh24ZzcrLSbcCL7zsmL7ez5-o-XTzezavpIjU8y2XKc72qhcwY4wJ1Y1CUgmrDMmqQG8ZkDFDShgKTKGvIsTaYlYDQaMkbysfk-vB3693bgKFXGxtMbKA7dENQUDBRlJQDj-jVH3TtBt_FdpHiRSaKPGeRmhwo410IHldq6-1G-51iVO0nVPsJ1c-EUSgPwodtcfcPraYP89mv-wXnDnNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737457661</pqid></control><display><type>article</type><title>Strain Control to Stabilize Perovskite Solar Cells</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Hui ; Park, Nam‐Gyu</creator><creatorcontrib>Zhang, Hui ; Park, Nam‐Gyu</creatorcontrib><description>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties. Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202212268</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical bonds ; Chemical degradation ; Fabrication ; Fragility ; Perovskite Solar Cells ; Perovskites ; Phase transitions ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Stability ; Strain ; Stress ; Thin films</subject><ispartof>Angewandte Chemie International Edition, 2022-11, Vol.61 (48), p.e202212268-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</citedby><cites>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</cites><orcidid>0000-0003-2368-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202212268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202212268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><title>Strain Control to Stabilize Perovskite Solar Cells</title><title>Angewandte Chemie International Edition</title><description>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties. Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</description><subject>Chemical bonds</subject><subject>Chemical degradation</subject><subject>Fabrication</subject><subject>Fragility</subject><subject>Perovskite Solar Cells</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Strain</subject><subject>Stress</subject><subject>Thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXzwUvXjqTl6ZNj6NMHQwVpueQpm-Q2TUzaZX515sxUfDi6X2H3-_x8RFyyeiEUQo3urM4AQrAAHJ5REZMAEt5UfDjmDPO00IKdkrOQlhHXkqajwgse69tl1Su671rk94ly17XtrWfmDyhd-_h1faYLF2rfVJh24ZzcrLSbcCL7zsmL7ez5-o-XTzezavpIjU8y2XKc72qhcwY4wJ1Y1CUgmrDMmqQG8ZkDFDShgKTKGvIsTaYlYDQaMkbysfk-vB3693bgKFXGxtMbKA7dENQUDBRlJQDj-jVH3TtBt_FdpHiRSaKPGeRmhwo410IHldq6-1G-51iVO0nVPsJ1c-EUSgPwodtcfcPraYP89mv-wXnDnNJ</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Zhang, Hui</creator><creator>Park, Nam‐Gyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></search><sort><creationdate>20221125</creationdate><title>Strain Control to Stabilize Perovskite Solar Cells</title><author>Zhang, Hui ; Park, Nam‐Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical bonds</topic><topic>Chemical degradation</topic><topic>Fabrication</topic><topic>Fragility</topic><topic>Perovskite Solar Cells</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Strain</topic><topic>Stress</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Park, Nam‐Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Control to Stabilize Perovskite Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-11-25</date><risdate>2022</risdate><volume>61</volume><issue>48</issue><spage>e202212268</spage><epage>n/a</epage><pages>e202212268-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties. Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202212268</doi><tpages>12</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-11, Vol.61 (48), p.e202212268-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2715790323
source Wiley Online Library - AutoHoldings Journals
subjects Chemical bonds
Chemical degradation
Fabrication
Fragility
Perovskite Solar Cells
Perovskites
Phase transitions
Photovoltaic cells
Photovoltaics
Solar cells
Stability
Strain
Stress
Thin films
title Strain Control to Stabilize Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Control%20to%20Stabilize%20Perovskite%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Hui&rft.date=2022-11-25&rft.volume=61&rft.issue=48&rft.spage=e202212268&rft.epage=n/a&rft.pages=e202212268-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202212268&rft_dat=%3Cproquest_cross%3E2737457661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737457661&rft_id=info:pmid/&rfr_iscdi=true