Strain Control to Stabilize Perovskite Solar Cells
Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the ex...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-11, Vol.61 (48), p.e202212268-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | e202212268 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Zhang, Hui Park, Nam‐Gyu |
description | Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties.
Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties. |
doi_str_mv | 10.1002/anie.202212268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2715790323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737457661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwUvXjqTl6ZNj6NMHQwVpueQpm-Q2TUzaZX515sxUfDi6X2H3-_x8RFyyeiEUQo3urM4AQrAAHJ5REZMAEt5UfDjmDPO00IKdkrOQlhHXkqajwgse69tl1Su671rk94ly17XtrWfmDyhd-_h1faYLF2rfVJh24ZzcrLSbcCL7zsmL7ez5-o-XTzezavpIjU8y2XKc72qhcwY4wJ1Y1CUgmrDMmqQG8ZkDFDShgKTKGvIsTaYlYDQaMkbysfk-vB3693bgKFXGxtMbKA7dENQUDBRlJQDj-jVH3TtBt_FdpHiRSaKPGeRmhwo410IHldq6-1G-51iVO0nVPsJ1c-EUSgPwodtcfcPraYP89mv-wXnDnNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737457661</pqid></control><display><type>article</type><title>Strain Control to Stabilize Perovskite Solar Cells</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Hui ; Park, Nam‐Gyu</creator><creatorcontrib>Zhang, Hui ; Park, Nam‐Gyu</creatorcontrib><description>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties.
Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202212268</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical bonds ; Chemical degradation ; Fabrication ; Fragility ; Perovskite Solar Cells ; Perovskites ; Phase transitions ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Stability ; Strain ; Stress ; Thin films</subject><ispartof>Angewandte Chemie International Edition, 2022-11, Vol.61 (48), p.e202212268-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</citedby><cites>FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</cites><orcidid>0000-0003-2368-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202212268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202212268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><title>Strain Control to Stabilize Perovskite Solar Cells</title><title>Angewandte Chemie International Edition</title><description>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties.
Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</description><subject>Chemical bonds</subject><subject>Chemical degradation</subject><subject>Fabrication</subject><subject>Fragility</subject><subject>Perovskite Solar Cells</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Strain</subject><subject>Stress</subject><subject>Thin films</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAUxoMoOKdXzwUvXjqTl6ZNj6NMHQwVpueQpm-Q2TUzaZX515sxUfDi6X2H3-_x8RFyyeiEUQo3urM4AQrAAHJ5REZMAEt5UfDjmDPO00IKdkrOQlhHXkqajwgse69tl1Su671rk94ly17XtrWfmDyhd-_h1faYLF2rfVJh24ZzcrLSbcCL7zsmL7ez5-o-XTzezavpIjU8y2XKc72qhcwY4wJ1Y1CUgmrDMmqQG8ZkDFDShgKTKGvIsTaYlYDQaMkbysfk-vB3693bgKFXGxtMbKA7dENQUDBRlJQDj-jVH3TtBt_FdpHiRSaKPGeRmhwo410IHldq6-1G-51iVO0nVPsJ1c-EUSgPwodtcfcPraYP89mv-wXnDnNJ</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Zhang, Hui</creator><creator>Park, Nam‐Gyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></search><sort><creationdate>20221125</creationdate><title>Strain Control to Stabilize Perovskite Solar Cells</title><author>Zhang, Hui ; Park, Nam‐Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3468-36afb5841135eadce5950ac140ce3c11840c290d0218e8b26ebce492e2da83d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical bonds</topic><topic>Chemical degradation</topic><topic>Fabrication</topic><topic>Fragility</topic><topic>Perovskite Solar Cells</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Strain</topic><topic>Stress</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Park, Nam‐Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Control to Stabilize Perovskite Solar Cells</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-11-25</date><risdate>2022</risdate><volume>61</volume><issue>48</issue><spage>e202212268</spage><epage>n/a</epage><pages>e202212268-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Perovskite solar cells (PSCs) are rivaling most commercial photovoltaics in the aspect of efficiency and cost, while their intrinsic instability remains a major concern for their practical deployment. The presence of undesirable strain in PSCs during device fabrication and operation refers to the extension/narrowing of chemical bonds and expansion/shrinkage of lattice volume, which largely affects device stability due to promoted phase transition, chemical decomposition, and mechanical fragility. Pioneering investigations and remarkable achievements have revealed that strain control is indispensable in the design of stable PSCs. Herein, the evolution of strain in perovskite thin films and its effect on device performance is elucidated, and state‐of‐the‐art strategies of strain modulation are systematically reviewed. A thorough understanding and cautious control of the strain‐related phenomenon pave the pathway to derive perovskite materials with desired properties.
Non‐uniformly distributed tensile strain is likely to present in solution‐processed perovskite thin films, which severely undermines the operational stability of resultant perovskite solar cells. A fundamental understanding and cautious control of residual strain within the perovskites is indispensable to derive stable perovskite materials with designed properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202212268</doi><tpages>12</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-11, Vol.61 (48), p.e202212268-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2715790323 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Chemical bonds Chemical degradation Fabrication Fragility Perovskite Solar Cells Perovskites Phase transitions Photovoltaic cells Photovoltaics Solar cells Stability Strain Stress Thin films |
title | Strain Control to Stabilize Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Control%20to%20Stabilize%20Perovskite%20Solar%20Cells&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Hui&rft.date=2022-11-25&rft.volume=61&rft.issue=48&rft.spage=e202212268&rft.epage=n/a&rft.pages=e202212268-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202212268&rft_dat=%3Cproquest_cross%3E2737457661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737457661&rft_id=info:pmid/&rfr_iscdi=true |