Series solutions for boundary value problems using a symbolic successive substitution method

This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 1999-02, Vol.23 (3), p.287-296
Hauptverfasser: Subramanian, Venkat R., Haran, Bala S., White, Ralph E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 3
container_start_page 287
container_title Computers & chemical engineering
container_volume 23
creator Subramanian, Venkat R.
Haran, Bala S.
White, Ralph E.
description This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.
doi_str_mv 10.1016/S0098-1354(98)00273-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27155803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135498002737</els_id><sourcerecordid>27155803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJodttf0JAhxDSgxPJki35VMqStoGFHDa5FYQkj1sF29po7IX991F2l_SY07zD997MPELOObvmjNc3G8YaXXBRyatGf2OsVKJQH8iC6yykUNUZWbwhn8hnxCeWKan1gvzZQAqAFGM_TyGOSLuYqIvz2Nq0pzvbz0C3KboeBqQzhvEvtRT3g4t98BRn7wEx7CBLh1OYDil0gOlfbL-Qj53tEb6e5pI8_rx9WP0u1ve_7lY_1oWXTE5FJ7xsvJa1Erp1klW1k1x0koEWtmxAuFo57ph3EpRy0Hau9K6pSlf5VrVOLMnlMTcf-jwDTmYI6KHv7QhxRlMqXlWaiQxWR9CniJigM9sUhvyo4cy8dmkOXZrXokyehy6Nyr6L0wKL3vZdsqMP-N-sRK1rmbHvRwzys7sAyaAPMHpoQwI_mTaGdxa9ANXBixY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27155803</pqid></control><display><type>article</type><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><source>Elsevier ScienceDirect Journals</source><creator>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</creator><creatorcontrib>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</creatorcontrib><description>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/S0098-1354(98)00273-7</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Computers &amp; chemical engineering, 1999-02, Vol.23 (3), p.287-296</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135498002737$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1736864$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Venkat R.</creatorcontrib><creatorcontrib>Haran, Bala S.</creatorcontrib><creatorcontrib>White, Ralph E.</creatorcontrib><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><title>Computers &amp; chemical engineering</title><description>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVJodttf0JAhxDSgxPJki35VMqStoGFHDa5FYQkj1sF29po7IX991F2l_SY07zD997MPELOObvmjNc3G8YaXXBRyatGf2OsVKJQH8iC6yykUNUZWbwhn8hnxCeWKan1gvzZQAqAFGM_TyGOSLuYqIvz2Nq0pzvbz0C3KboeBqQzhvEvtRT3g4t98BRn7wEx7CBLh1OYDil0gOlfbL-Qj53tEb6e5pI8_rx9WP0u1ve_7lY_1oWXTE5FJ7xsvJa1Erp1klW1k1x0koEWtmxAuFo57ph3EpRy0Hau9K6pSlf5VrVOLMnlMTcf-jwDTmYI6KHv7QhxRlMqXlWaiQxWR9CniJigM9sUhvyo4cy8dmkOXZrXokyehy6Nyr6L0wKL3vZdsqMP-N-sRK1rmbHvRwzys7sAyaAPMHpoQwI_mTaGdxa9ANXBixY</recordid><startdate>19990228</startdate><enddate>19990228</enddate><creator>Subramanian, Venkat R.</creator><creator>Haran, Bala S.</creator><creator>White, Ralph E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990228</creationdate><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><author>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Venkat R.</creatorcontrib><creatorcontrib>Haran, Bala S.</creatorcontrib><creatorcontrib>White, Ralph E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Venkat R.</au><au>Haran, Bala S.</au><au>White, Ralph E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Series solutions for boundary value problems using a symbolic successive substitution method</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>1999-02-28</date><risdate>1999</risdate><volume>23</volume><issue>3</issue><spage>287</spage><epage>296</epage><pages>287-296</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0098-1354(98)00273-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 1999-02, Vol.23 (3), p.287-296
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_27155803
source Elsevier ScienceDirect Journals
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
title Series solutions for boundary value problems using a symbolic successive substitution method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Series%20solutions%20for%20boundary%20value%20problems%20using%20a%20symbolic%20successive%20substitution%20method&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Subramanian,%20Venkat%20R.&rft.date=1999-02-28&rft.volume=23&rft.issue=3&rft.spage=287&rft.epage=296&rft.pages=287-296&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/S0098-1354(98)00273-7&rft_dat=%3Cproquest_cross%3E27155803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27155803&rft_id=info:pmid/&rft_els_id=S0098135498002737&rfr_iscdi=true