Series solutions for boundary value problems using a symbolic successive substitution method
This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 1999-02, Vol.23 (3), p.287-296 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 3 |
container_start_page | 287 |
container_title | Computers & chemical engineering |
container_volume | 23 |
creator | Subramanian, Venkat R. Haran, Bala S. White, Ralph E. |
description | This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems. |
doi_str_mv | 10.1016/S0098-1354(98)00273-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27155803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135498002737</els_id><sourcerecordid>27155803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJodttf0JAhxDSgxPJki35VMqStoGFHDa5FYQkj1sF29po7IX991F2l_SY07zD997MPELOObvmjNc3G8YaXXBRyatGf2OsVKJQH8iC6yykUNUZWbwhn8hnxCeWKan1gvzZQAqAFGM_TyGOSLuYqIvz2Nq0pzvbz0C3KboeBqQzhvEvtRT3g4t98BRn7wEx7CBLh1OYDil0gOlfbL-Qj53tEb6e5pI8_rx9WP0u1ve_7lY_1oWXTE5FJ7xsvJa1Erp1klW1k1x0koEWtmxAuFo57ph3EpRy0Hau9K6pSlf5VrVOLMnlMTcf-jwDTmYI6KHv7QhxRlMqXlWaiQxWR9CniJigM9sUhvyo4cy8dmkOXZrXokyehy6Nyr6L0wKL3vZdsqMP-N-sRK1rmbHvRwzys7sAyaAPMHpoQwI_mTaGdxa9ANXBixY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27155803</pqid></control><display><type>article</type><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><source>Elsevier ScienceDirect Journals</source><creator>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</creator><creatorcontrib>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</creatorcontrib><description>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/S0098-1354(98)00273-7</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology</subject><ispartof>Computers & chemical engineering, 1999-02, Vol.23 (3), p.287-296</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135498002737$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1736864$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Subramanian, Venkat R.</creatorcontrib><creatorcontrib>Haran, Bala S.</creatorcontrib><creatorcontrib>White, Ralph E.</creatorcontrib><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><title>Computers & chemical engineering</title><description>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVJodttf0JAhxDSgxPJki35VMqStoGFHDa5FYQkj1sF29po7IX991F2l_SY07zD997MPELOObvmjNc3G8YaXXBRyatGf2OsVKJQH8iC6yykUNUZWbwhn8hnxCeWKan1gvzZQAqAFGM_TyGOSLuYqIvz2Nq0pzvbz0C3KboeBqQzhvEvtRT3g4t98BRn7wEx7CBLh1OYDil0gOlfbL-Qj53tEb6e5pI8_rx9WP0u1ve_7lY_1oWXTE5FJ7xsvJa1Erp1klW1k1x0koEWtmxAuFo57ph3EpRy0Hau9K6pSlf5VrVOLMnlMTcf-jwDTmYI6KHv7QhxRlMqXlWaiQxWR9CniJigM9sUhvyo4cy8dmkOXZrXokyehy6Nyr6L0wKL3vZdsqMP-N-sRK1rmbHvRwzys7sAyaAPMHpoQwI_mTaGdxa9ANXBixY</recordid><startdate>19990228</startdate><enddate>19990228</enddate><creator>Subramanian, Venkat R.</creator><creator>Haran, Bala S.</creator><creator>White, Ralph E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990228</creationdate><title>Series solutions for boundary value problems using a symbolic successive substitution method</title><author>Subramanian, Venkat R. ; Haran, Bala S. ; White, Ralph E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f3c49c846738db4056b413f40e83a29e3b67b1b0cb4e77bedfb2cb952b5cd7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subramanian, Venkat R.</creatorcontrib><creatorcontrib>Haran, Bala S.</creatorcontrib><creatorcontrib>White, Ralph E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subramanian, Venkat R.</au><au>Haran, Bala S.</au><au>White, Ralph E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Series solutions for boundary value problems using a symbolic successive substitution method</atitle><jtitle>Computers & chemical engineering</jtitle><date>1999-02-28</date><risdate>1999</risdate><volume>23</volume><issue>3</issue><spage>287</spage><epage>296</epage><pages>287-296</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>This paper presents a method for obtaining series solutions for boundary value problems (BVPs). The technique consists of converting the given two point BVP into an initial value problem (IVP). This IVP is then solved using the successive substitution method (SSM) with the boundary condition at the other endpoint as an additional constraint. The series solutions obtained by this process depend on both the independent variable and the parameters (such as reaction rate constants) that appear in the governing equations. The method is illustrated for both linear and nonlinear problems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0098-1354(98)00273-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 1999-02, Vol.23 (3), p.287-296 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_27155803 |
source | Elsevier ScienceDirect Journals |
subjects | Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization Applied sciences Chemical engineering Exact sciences and technology |
title | Series solutions for boundary value problems using a symbolic successive substitution method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Series%20solutions%20for%20boundary%20value%20problems%20using%20a%20symbolic%20successive%20substitution%20method&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Subramanian,%20Venkat%20R.&rft.date=1999-02-28&rft.volume=23&rft.issue=3&rft.spage=287&rft.epage=296&rft.pages=287-296&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/S0098-1354(98)00273-7&rft_dat=%3Cproquest_cross%3E27155803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27155803&rft_id=info:pmid/&rft_els_id=S0098135498002737&rfr_iscdi=true |