Lipid nanoparticle-encapsulated VEGFa siRNA facilitates cartilage formation by suppressing angiogenesis

Cartilage is an important tissue that is widely found in joints, ears, nose and other organs. The limited capacity to regenerate makes cartilage reconstruction an urgent clinical demand. Due to the avascular nature of cartilage, we hypothesized that inhibition of vascularization contributes to carti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2022-11, Vol.221, p.1313-1324
Hauptverfasser: Chen, Yi, Chen, Wei, Ren, Yiming, Li, Shuling, Liu, Miao, Xing, Jiahua, Han, Yudi, Chen, Youbai, Tao, Ran, Guo, Lingli, Sui, Xiang, Guo, Quanyi, Liu, Shuyun, Han, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cartilage is an important tissue that is widely found in joints, ears, nose and other organs. The limited capacity to regenerate makes cartilage reconstruction an urgent clinical demand. Due to the avascular nature of cartilage, we hypothesized that inhibition of vascularization contributes to cartilage formation. Here, we used VEGFa siRNA to inhibit the infiltration of the local vascular system. Optimized lipid nanoparticles were prepared by microfluidics for the delivery of siRNA. Then, we constructed a tissue engineering scaffold. Both seed cells and VEGFa siRNA-LNPs were loaded in a GELMA hydrogel. Subcutaneous implantation experiments in nude mice indicate that this is a promising strategy for cartilage reconstruction. The regenerated cartilage was superior, with significant upregulation of SOX9, COL-II and ACAN. This is attributed to an environment deficient in oxygen and nutrients, which facilitates cartilage formation by upregulating HIF-1α and FOXO transcription factors. In conclusion, a GelMA/Cells+VEGFa siRNA-LNPs scaffold was constructed to achieve superior cartilage regeneration. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.09.065