A fundamental model of cyclic instabilities in thermal barrier systems

Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2002-08, Vol.50 (8), p.1565-1589
Hauptverfasser: Karlsson, A.M., Hutchinson, J.W., Evans, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1589
container_issue 8
container_start_page 1565
container_title Journal of the mechanics and physics of solids
container_volume 50
creator Karlsson, A.M.
Hutchinson, J.W.
Evans, A.G.
description Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.
doi_str_mv 10.1016/S0022-5096(02)00003-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27150086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022509602000030</els_id><sourcerecordid>27150086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-44cf27661f2b5667e6eee8d903b1fe4806f124b241d0a43943234fdc5efd55f03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhntQcF39CUIvih6qk7RJ25Msi6vCggf1HNJkgpF-rJmssP_e7gd6dC5hhmfmJU-SXDC4ZcDk3SsA55mAWl4Dv4Gx8gyOksnv-CQ5Jfoc5wJKNkkWs9Ste6s77KNu026w2KaDS83GtN6kvqeoG9_66JHGLo0fGLoRbHQIHkNKG4rY0Vly7HRLeH54p8n74uFt_pQtXx6f57NlZnJZxawojOOllMzxRkhZokTEytaQN8xhUYF0jBcNL5gFXeR1kfO8cNYIdFYIB_k0udrfXYXha40UVefJYNvqHoc1KV4yAVDJERR70ISBKKBTq-A7HTaKgdqaUjtTaqtEAVc7U2obcHkI0GR064Lujae_5bzkvOblyN3vORx_-z2aUGQ89gatD2iisoP_J-kHwWh-qA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27150086</pqid></control><display><type>article</type><title>A fundamental model of cyclic instabilities in thermal barrier systems</title><source>Elsevier ScienceDirect Journals</source><creator>Karlsson, A.M. ; Hutchinson, J.W. ; Evans, A.G.</creator><creatorcontrib>Karlsson, A.M. ; Hutchinson, J.W. ; Evans, A.G.</creatorcontrib><description>Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.</description><identifier>ISSN: 0022-5096</identifier><identifier>DOI: 10.1016/S0022-5096(02)00003-0</identifier><identifier>CODEN: JMPSA8</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Thermomechanical process ; B. Elastic–plastic material ; B. Thermal stresses ; C. Analytical function ; C. Finite elements ; Computational techniques ; Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Finite-element and galerkin methods ; Mathematical methods in physics ; Mechanical and acoustical properties ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Physical properties of thin films, nonelectronic ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of the mechanics and physics of solids, 2002-08, Vol.50 (8), p.1565-1589</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-44cf27661f2b5667e6eee8d903b1fe4806f124b241d0a43943234fdc5efd55f03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-5096(02)00003-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13722927$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Karlsson, A.M.</creatorcontrib><creatorcontrib>Hutchinson, J.W.</creatorcontrib><creatorcontrib>Evans, A.G.</creatorcontrib><title>A fundamental model of cyclic instabilities in thermal barrier systems</title><title>Journal of the mechanics and physics of solids</title><description>Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.</description><subject>A. Thermomechanical process</subject><subject>B. Elastic–plastic material</subject><subject>B. Thermal stresses</subject><subject>C. Analytical function</subject><subject>C. Finite elements</subject><subject>Computational techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Finite-element and galerkin methods</subject><subject>Mathematical methods in physics</subject><subject>Mechanical and acoustical properties</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0022-5096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhntQcF39CUIvih6qk7RJ25Msi6vCggf1HNJkgpF-rJmssP_e7gd6dC5hhmfmJU-SXDC4ZcDk3SsA55mAWl4Dv4Gx8gyOksnv-CQ5Jfoc5wJKNkkWs9Ste6s77KNu026w2KaDS83GtN6kvqeoG9_66JHGLo0fGLoRbHQIHkNKG4rY0Vly7HRLeH54p8n74uFt_pQtXx6f57NlZnJZxawojOOllMzxRkhZokTEytaQN8xhUYF0jBcNL5gFXeR1kfO8cNYIdFYIB_k0udrfXYXha40UVefJYNvqHoc1KV4yAVDJERR70ISBKKBTq-A7HTaKgdqaUjtTaqtEAVc7U2obcHkI0GR064Lujae_5bzkvOblyN3vORx_-z2aUGQ89gatD2iisoP_J-kHwWh-qA</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Karlsson, A.M.</creator><creator>Hutchinson, J.W.</creator><creator>Evans, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020801</creationdate><title>A fundamental model of cyclic instabilities in thermal barrier systems</title><author>Karlsson, A.M. ; Hutchinson, J.W. ; Evans, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-44cf27661f2b5667e6eee8d903b1fe4806f124b241d0a43943234fdc5efd55f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>A. Thermomechanical process</topic><topic>B. Elastic–plastic material</topic><topic>B. Thermal stresses</topic><topic>C. Analytical function</topic><topic>C. Finite elements</topic><topic>Computational techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Finite-element and galerkin methods</topic><topic>Mathematical methods in physics</topic><topic>Mechanical and acoustical properties</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsson, A.M.</creatorcontrib><creatorcontrib>Hutchinson, J.W.</creatorcontrib><creatorcontrib>Evans, A.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsson, A.M.</au><au>Hutchinson, J.W.</au><au>Evans, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fundamental model of cyclic instabilities in thermal barrier systems</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>50</volume><issue>8</issue><spage>1565</spage><epage>1589</epage><pages>1565-1589</pages><issn>0022-5096</issn><coden>JMPSA8</coden><abstract>Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0022-5096(02)00003-0</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2002-08, Vol.50 (8), p.1565-1589
issn 0022-5096
language eng
recordid cdi_proquest_miscellaneous_27150086
source Elsevier ScienceDirect Journals
subjects A. Thermomechanical process
B. Elastic–plastic material
B. Thermal stresses
C. Analytical function
C. Finite elements
Computational techniques
Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Finite-element and galerkin methods
Mathematical methods in physics
Mechanical and acoustical properties
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Physical properties of thin films, nonelectronic
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title A fundamental model of cyclic instabilities in thermal barrier systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fundamental%20model%20of%20cyclic%20instabilities%20in%20thermal%20barrier%20systems&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Karlsson,%20A.M.&rft.date=2002-08-01&rft.volume=50&rft.issue=8&rft.spage=1565&rft.epage=1589&rft.pages=1565-1589&rft.issn=0022-5096&rft.coden=JMPSA8&rft_id=info:doi/10.1016/S0022-5096(02)00003-0&rft_dat=%3Cproquest_cross%3E27150086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27150086&rft_id=info:pmid/&rft_els_id=S0022509602000030&rfr_iscdi=true